An Evaluation of Model-Free Control Strategies for Quadrotor Type Unmanned Aerial Vehicles

The present study addresses two representative model-free control strategies namely, model-free intelligent PID (i-PID) and type-2 fuzzy adaptive PID in control of a quadrotor type vertical take-off and landing (VTOL) unmanned aerial vehicle. The objectives of this study are i) to summarize the modeling and flight control methods of quadrotor in some classifications, ii) to investigate merits and demerits of model-free control strategies, iii) to compare the control performance in terms of some quantitative performance criteria. The results illustrate the performance of such methodologies applied to the quadrotor system.

[1]  Limei Cheng,et al.  A Robust Inner and Outer Loop Control Method for Trajectory Tracking of a Quadrotor , 2017, Sensors.

[2]  Cédric Join,et al.  Model-free control , 2013, Int. J. Control.

[3]  Jing Wang,et al.  Event-driven model-free control in motion control with comparisons , 2016, IMA J. Math. Control. Inf..

[4]  Alejandro Ramirez-Serrano,et al.  Adaptive fuzzy control for a quadrotor helicopter robust to wind buffeting , 2011, J. Intell. Fuzzy Syst..

[5]  Gang Zheng,et al.  Model-free–based terminal SMC of quadrotor attitude and position , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Karl Johan Åström,et al.  Control: A perspective , 2014, Autom..

[7]  Ye Yan,et al.  Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control , 2016 .

[8]  Mehmet Önder Efe,et al.  Integral sliding mode control of a quadrotor with fractional order reaching dynamics , 2011 .

[9]  Jing Wang,et al.  Event driven model free control of quadrotor , 2013, 2013 IEEE International Conference on Control Applications (CCA).

[10]  Mostafa Hassanalian,et al.  Classifications, applications, and design challenges of drones: A review , 2017 .

[11]  Jun Zhou,et al.  A Two-Step Approach for an Enhanced Quadrotor Attitude Estimation via IMU Data , 2018, IEEE Transactions on Control Systems Technology.

[12]  Abdelhamid Rabhi,et al.  Model-free control of a quadrotor vehicle , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[13]  Roland Siegwart,et al.  Full control of a quadrotor , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Hicham Chaoui,et al.  Computationally Efficient Adaptive Type-2 Fuzzy Control of Flexible-Joint Manipulators , 2013, Robotics.

[15]  Cheolkeun Ha,et al.  Control of a Quadrotor Using a Smart Self-Tuning Fuzzy PID Controller , 2013 .

[16]  Mehmet Önder Efe,et al.  Autonomous quadrotor flight with vision-based obstacle avoidance in virtual environment , 2012, Expert Syst. Appl..

[17]  Leonid Fridman,et al.  High‐order sliding‐mode observer for a quadrotor UAV , 2008 .

[18]  Ahmad M. El-Nagar,et al.  Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system. , 2014, ISA transactions.

[19]  Yuanqing Xia,et al.  Output feedback delay compensation control for networked control systems with random delays , 2014, Inf. Sci..

[20]  Erdal Kayacan,et al.  Type-2 Fuzzy Logic Trajectory Tracking Control of Quadrotor VTOL Aircraft With Elliptic Membership Functions , 2017, IEEE/ASME Transactions on Mechatronics.

[21]  Yang Shi,et al.  EKF-based LQR tracking control of a quadrotor helicopter subject to uncertainties , 2016, IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society.

[22]  Pedro Ponce,et al.  Experimental Fuzzy Logic Controller Type 2 for a Quadrotor Optimized by ANFIS , 2015 .

[23]  Yangquan Chen,et al.  A Survey and Categorization of Small Low-Cost Unmanned Aerial Vehicle System Identification , 2014, J. Intell. Robotic Syst..

[24]  Michel Fliess,et al.  A mathematical explanation via “intelligent” PID controllers of the strange ubiquity of PIDs , 2010, 18th Mediterranean Conference on Control and Automation, MED'10.

[25]  Nohé R. Cázarez-Castro,et al.  Designing Type-1 and Type-2 Fuzzy Logic Controllers via Fuzzy Lyapunov Synthesis for nonsmooth mechanical systems , 2012, Eng. Appl. Artif. Intell..

[26]  T. Madani,et al.  Control of a Quadrotor Mini-Helicopter via Full State Backstepping Technique , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[27]  Mehmet Önder Efe,et al.  Neural Network Assisted Computationally Simple PI$^\lambda$D$^\mu$ Control of a Quadrotor UAV , 2011, IEEE Transactions on Industrial Informatics.

[28]  Anthony Tzes,et al.  Model predictive quadrotor control: attitude, altitude and position experimental studies , 2012 .

[29]  Guowei Cai,et al.  A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends , 2014 .

[30]  Coşku Kasnakoğlu,et al.  Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design , 2016, PloS one.

[31]  Hassan Noura,et al.  Emergency Control of AR Drone Quadrotor UAV Suffering a Total Loss of One Rotor , 2017, IEEE/ASME Transactions on Mechatronics.

[32]  Yisheng Zhong,et al.  Robust Attitude Stabilization for Nonlinear Quadrotor Systems With Uncertainties and Delays , 2017, IEEE Transactions on Industrial Electronics.

[33]  Vijay Kumar,et al.  Autonomous Flight for Detection, Localization, and Tracking of Moving Targets With a Small Quadrotor , 2017, IEEE Robotics and Automation Letters.

[34]  Amit Ailon,et al.  Closed-form nonlinear tracking controllers for quadrotors with model and input generator uncertainties , 2015, Autom..

[35]  Pedro Castillo,et al.  Attitude control of quadrotors based on fractional sliding modes: theory and experiments , 2016 .

[36]  Mehmet Önder Efe,et al.  Feedback control strategies for quadrotor-type aerial robots: a survey , 2016 .