Predicting Intended Movement Direction Using EEG from Human Posterior Parietal Cortex
暂无分享,去创建一个
[1] Miguel A. L. Nicolelis,et al. Actions from thoughts , 2001, Nature.
[2] Anthony R. Dickinson,et al. Non-spatial, motor-specific activation in posterior parietal cortex , 2002, Nature Neuroscience.
[3] J Werner,et al. A fiberoptic sensor system for cardiac monitoring and electrotherapy / Ein faseroptisches Sensorsystem für das Monitoring und die Elektrotherapie des Herzens , 2004, Biomedizinische Technik. Biomedical engineering.
[4] T. Sejnowski,et al. Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.
[5] N. Birbaumer. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. , 2006, Psychophysiology.
[6] R Thull,et al. Vergleichende Untersuchungen zur Eignung eines neuen Oberflächenkonditionierungsverfahrens (Airsonic Mini Sandblaster®) in der Klebebrückentechnik / Comparative Studies on the Applicability of a New Surface Conditioning System (Airsonic Mini Sandblaster®) in Adhesive Bridging Technic , 2004, Biomedizinische Technik. Biomedical engineering.
[7] Á. Pascual-Leone,et al. α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.
[8] M Congedo,et al. A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.
[9] Terrence J. Sejnowski,et al. Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.
[10] Arnaud Delorme,et al. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.
[11] R. Andersen,et al. Movement Intention Is Better Predicted than Attention in the Posterior Parietal Cortex , 2006, The Journal of Neuroscience.
[12] Helge J. Ritter,et al. BCI competition 2003-data set IIb: support vector machines for the P300 speller paradigm , 2004, IEEE Transactions on Biomedical Engineering.
[13] G. Pfurtscheller,et al. Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.
[14] Tzyy-Ping Jung,et al. Imaging brain dynamics using independent component analysis , 2001, Proc. IEEE.
[15] Dawn M. Taylor,et al. Direct Cortical Control of 3D Neuroprosthetic Devices , 2002, Science.
[16] C. Braun,et al. Hand Movement Direction Decoded from MEG and EEG , 2008, The Journal of Neuroscience.
[17] Jon A. Mukand,et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.
[18] Christopher J James,et al. Independent component analysis for biomedical signals , 2005, Physiological measurement.
[19] Gabriel Curio,et al. MACHINE LEARNING TECHNIQUES FOR BRAIN-COMPUTER INTERFACES , 2004 .
[20] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[21] E Donchin,et al. Brain-computer interface technology: a review of the first international meeting. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.
[22] H. Poizner,et al. Predicting Reaching Targets from Human EEG , 2008, IEEE Signal Processing Magazine.
[23] Miguel A. L. Nicolelis,et al. Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.