Predicting Intended Movement Direction Using EEG from Human Posterior Parietal Cortex

The posterior parietal cortex (PPC) plays an important role in motor planning and execution. Here, we investigated whether noninvasive electroencephalographic (EEG) signals recorded from the human PPC can be used to decode intended movement direction. To this end, we recorded whole-head EEG with a delayed saccade-or-reach task and found direction-related modulation of event-related potentials (ERPs) in the PPC. Using parietal EEG components extracted by independent component analysis (ICA), we obtained an average accuracy of 80.25% on four subjects in binary single-trial EEG classification (left versusright ). These results show that in the PPC, neuronal activity associated with different movement directions can be distinguished using EEG recording and might, thus, be used to drive a noninvasive brain-machine interface (BMI).

[1]  Miguel A. L. Nicolelis,et al.  Actions from thoughts , 2001, Nature.

[2]  Anthony R. Dickinson,et al.  Non-spatial, motor-specific activation in posterior parietal cortex , 2002, Nature Neuroscience.

[3]  J Werner,et al.  A fiberoptic sensor system for cardiac monitoring and electrotherapy / Ein faseroptisches Sensorsystem für das Monitoring und die Elektrotherapie des Herzens , 2004, Biomedizinische Technik. Biomedical engineering.

[4]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[5]  N. Birbaumer Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. , 2006, Psychophysiology.

[6]  R Thull,et al.  Vergleichende Untersuchungen zur Eignung eines neuen Oberflächenkonditionierungsverfahrens (Airsonic Mini Sandblaster®) in der Klebebrückentechnik / Comparative Studies on the Applicability of a New Surface Conditioning System (Airsonic Mini Sandblaster®) in Adhesive Bridging Technic , 2004, Biomedizinische Technik. Biomedical engineering.

[7]  Á. Pascual-Leone,et al.  α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection , 2006, The Journal of Neuroscience.

[8]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces , 2007, Journal of neural engineering.

[9]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[10]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[11]  R. Andersen,et al.  Movement Intention Is Better Predicted than Attention in the Posterior Parietal Cortex , 2006, The Journal of Neuroscience.

[12]  Helge J. Ritter,et al.  BCI competition 2003-data set IIb: support vector machines for the P300 speller paradigm , 2004, IEEE Transactions on Biomedical Engineering.

[13]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[14]  Tzyy-Ping Jung,et al.  Imaging brain dynamics using independent component analysis , 2001, Proc. IEEE.

[15]  Dawn M. Taylor,et al.  Direct Cortical Control of 3D Neuroprosthetic Devices , 2002, Science.

[16]  C. Braun,et al.  Hand Movement Direction Decoded from MEG and EEG , 2008, The Journal of Neuroscience.

[17]  Jon A. Mukand,et al.  Neuronal ensemble control of prosthetic devices by a human with tetraplegia , 2006, Nature.

[18]  Christopher J James,et al.  Independent component analysis for biomedical signals , 2005, Physiological measurement.

[19]  Gabriel Curio,et al.  MACHINE LEARNING TECHNIQUES FOR BRAIN-COMPUTER INTERFACES , 2004 .

[20]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[21]  E Donchin,et al.  Brain-computer interface technology: a review of the first international meeting. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[22]  H. Poizner,et al.  Predicting Reaching Targets from Human EEG , 2008, IEEE Signal Processing Magazine.

[23]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces: past, present and future , 2006, Trends in Neurosciences.