Instantons in two and four dimensions
暂无分享,去创建一个
[1] S. Donaldson. Anti Self‐Dual Yang‐Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles , 1985 .
[2] A. Kirillov. Elements of the theory of representations , 1976 .
[3] S. Donaldson. Instantons and geometric invariant theory , 1984 .
[4] S. Donaldson,et al. Nahm's equations and the classification of monopoles , 1984 .
[5] W. Nahm. All Self-Dual Multimonopoles for Arbitrary Gauge Groups , 1983 .
[6] Michael Atiyah,et al. Topological aspects of Yang-Mills theory , 1978 .
[7] A. Pressley. The Energy Flow on the Loop Space of a Compact Lie Group , 1982 .
[8] A. Chakrabarti. Instanton chains with multimonopole limits: Lax pairs for non-axially-symmetric cases , 1983 .
[9] M. Atiyah,et al. Construction of Instantons , 1978 .
[10] M. Maruyama. Stable vector bundles on an algebraic surface , 1975, Nagoya Mathematical Journal.
[11] A. Pressley. Decompositions of the space of loops on a lie group , 1980 .
[12] N. Hitchin. Monopoles and geodesics , 1982 .
[13] Graeme Segal,et al. The topology of spaces of rational functions , 1979 .
[14] G. Segal. Unitary representations of some infinite dimensional groups , 1981 .
[15] C. Taubes. The existence of a non-minimal solution to the SU (2) Yang-Mills-Higgs equations on ℝ3. Part I , 1982 .