Essentially optimal computation of the inverse of generic polynomial matrices

We present an inversion algorithm for nonsingular n × n matrices whose entries are degree d polynomials over a field. The algorithm is deterministic and, when n is a power of two, requires O ∼ (n3d) field operations for a generic input; the soft-O notation O∼ indicates some missing log(nd) factors. Up to such logarithmic factors, this asymptotic complexity is of the same order as the number of distinct field elements necessary to represent the inverse matrix.

[1]  Erich Kaltofen,et al.  On computing determinants of matrices without divisions , 1992, ISSAC '92.

[2]  Robert T. Moenck,et al.  Approximate algorithms to derive exact solutions to systems of linear equations , 1979, EUROSAM.

[3]  J. Hopcroft,et al.  Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .

[4]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[5]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[6]  Arne Storjohann,et al.  On lattice reduction for polynomial matrices , 2003, J. Symb. Comput..

[7]  Kyriakos Kalorkoti ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .

[8]  F. Gantmakher,et al.  Théorie des matrices , 1990 .

[9]  Thomas Kailath,et al.  Linear Systems , 1980 .

[10]  Éric Schost,et al.  Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..

[11]  Arne Storjohann,et al.  High-order lifting and integrality certification , 2003, J. Symb. Comput..

[12]  Ching-An Lin,et al.  An algorithm for inverting rational matrices , 1996 .

[13]  Arne Storjohann High-order lifting , 2002, ISSAC '02.

[14]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[15]  J. Dixon Exact solution of linear equations usingP-adic expansions , 1982 .

[16]  Arne Storjohann,et al.  On lattice reduction for polynomial matrices , 2000 .

[17]  Erich Kaltofen,et al.  On the complexity of computing determinants , 2001, computational complexity.

[18]  J. D. Lipson,et al.  Chinese remainder and interpolation algorithms , 1971, SYMSAC '71.

[19]  P. Dooren,et al.  An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .

[20]  V. Strassen Gaussian elimination is not optimal , 1969 .

[21]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[22]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[23]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[24]  Cornelis Praagman,et al.  A new method for computing a column reduced polynomial matrix , 1988 .

[25]  Gilles Villard,et al.  On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[26]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[27]  George Labahn,et al.  Normal forms for general polynomial matrices , 2006, J. Symb. Comput..

[28]  E. Kaltofen,et al.  ON THE COMPLEXITY OF COMPUTING DETERMINANTS* (Extended abstract) , 2001 .

[29]  Marie-Pierre Quere Stuchlik Algorithmique des faisceaux lineaires de matrices, application a la theorie des systemes lineaires et a la resolution d'equations algebro-differentielles , 1997 .

[30]  Arnold Schönhage Unitäre Transformationen großer Matrizen , 1972 .

[31]  E. Kaltofen Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems , 1995 .

[32]  Erwin H. Bareiss,et al.  Computational Solutions of Matrix Problems Over an Integral Domain , 1972 .

[33]  George Labahn,et al.  Shifted normal forms of polynomial matrices , 1999, ISSAC '99.

[34]  Alin Bostan,et al.  Algorithmique efficace pour des opérations de base en calcul formel. (Fast algorithms for basic operations in computer algebra) , 2003 .