Essentially optimal computation of the inverse of generic polynomial matrices
暂无分享,去创建一个
[1] Erich Kaltofen,et al. On computing determinants of matrices without divisions , 1992, ISSAC '92.
[2] Robert T. Moenck,et al. Approximate algorithms to derive exact solutions to systems of linear equations , 1979, EUROSAM.
[3] J. Hopcroft,et al. Triangular Factorization and Inversion by Fast Matrix Multiplication , 1974 .
[4] A. Storjohann. Algorithms for matrix canonical forms , 2000 .
[5] B. Beckermann,et al. A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..
[6] Arne Storjohann,et al. On lattice reduction for polynomial matrices , 2003, J. Symb. Comput..
[7] Kyriakos Kalorkoti. ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .
[8] F. Gantmakher,et al. Théorie des matrices , 1990 .
[9] Thomas Kailath,et al. Linear Systems , 1980 .
[10] Éric Schost,et al. Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..
[11] Arne Storjohann,et al. High-order lifting and integrality certification , 2003, J. Symb. Comput..
[12] Ching-An Lin,et al. An algorithm for inverting rational matrices , 1996 .
[13] Arne Storjohann. High-order lifting , 2002, ISSAC '02.
[14] Jr. G. Forney,et al. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .
[15] J. Dixon. Exact solution of linear equations usingP-adic expansions , 1982 .
[16] Arne Storjohann,et al. On lattice reduction for polynomial matrices , 2000 .
[17] Erich Kaltofen,et al. On the complexity of computing determinants , 2001, computational complexity.
[18] J. D. Lipson,et al. Chinese remainder and interpolation algorithms , 1971, SYMSAC '71.
[19] P. Dooren,et al. An improved algorithm for the computation of Kronecker's canonical form of a singular pencil , 1988 .
[20] V. Strassen. Gaussian elimination is not optimal , 1969 .
[21] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[22] Erich Kaltofen,et al. On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.
[23] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[24] Cornelis Praagman,et al. A new method for computing a column reduced polynomial matrix , 1988 .
[25] Gilles Villard,et al. On computing the determinant and Smith form of an integer matrix , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[26] Claude-Pierre Jeannerod,et al. On the complexity of polynomial matrix computations , 2003, ISSAC '03.
[27] George Labahn,et al. Normal forms for general polynomial matrices , 2006, J. Symb. Comput..
[28] E. Kaltofen,et al. ON THE COMPLEXITY OF COMPUTING DETERMINANTS* (Extended abstract) , 2001 .
[29] Marie-Pierre Quere Stuchlik. Algorithmique des faisceaux lineaires de matrices, application a la theorie des systemes lineaires et a la resolution d'equations algebro-differentielles , 1997 .
[30] Arnold Schönhage. Unitäre Transformationen großer Matrizen , 1972 .
[31] E. Kaltofen. Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems , 1995 .
[32] Erwin H. Bareiss,et al. Computational Solutions of Matrix Problems Over an Integral Domain , 1972 .
[33] George Labahn,et al. Shifted normal forms of polynomial matrices , 1999, ISSAC '99.
[34] Alin Bostan,et al. Algorithmique efficace pour des opérations de base en calcul formel. (Fast algorithms for basic operations in computer algebra) , 2003 .