다중 파라메터 MR 영상에서 텍스처 분석을 통한 자동 전립선암 검출
暂无分享,去创建一个
In this paper, we propose an automatic prostate cancer detection method using position, signal intensity and texture feature based on SVM in multi-parametric MR images. First, to align the prostate on DWI and ADC map to T2wMR, the transformation parameters of DWI are estimated by normalized mutual information-based rigid registration. Then, to normalize the signal intensity range among inter-patient images, histogram stretching is performed. Second, to detect prostate cancer areas in T2wMR, SVM classification with position, signal intensity and texture features was performed on T2wMR, DWI and ADC map. Our feature classification using multi-parametric MR imaging can improve the prostate cancer detection rate on T2wMR.