Trends in photonic lab-on-chip interferometric biosensors for point-of-care diagnostics

Portable point-of care (POC) devices for in vitro diagnostics will be a milestone for the achievement of universal healthcare and environmental protection. The main goal is to reach a rapid, user-friendly and highly sensitive portable tool which can provide immediate results in any place at any time while having a competitive cost. Integrated optical (IO) waveguide based-biosensors are the most suitable candidates to achieve this ambitious objective. They are able to operate in real samples (such as blood, urine, wastewater…) affording relevant sensitivities even under a label-free scheme. In addition, arrays of IO sensors for multiplexed analysis can be integrated in lab-on-chip (LOC) platforms, providing a truly cost-effective fabrication and miniaturization. Among the different IO biosensors, interferometric ones have demonstrated the highest sensitivity for label-free detection ever reported. Although the first interferometric biosensors were developed in the early nineties, they focused mainly on preliminary proof-of-concept studies; only recently the resilient potential of interferometric biosensors as highly advanced POC devices has firmly emerged. This review provides an overview of the state-of-the art in photonic interferometric biosensors, their main biofunctionalisation routes and their integration in LOC platforms, while maintaining a special focus on the real analytical applications achieved so far.

[1]  Abdelhamid Elaissari,et al.  Surface Sensitization Techniques and Recognition Receptors Immobilization on Biosensors and Microarrays , 2010 .

[2]  B H Schneider,et al.  Highly sensitive optical chip immunoassays in human serum. , 2000, Biosensors & bioelectronics.

[3]  Frank F Bier,et al.  Integrated planar optical waveguide interferometer biosensors: a comparative review. , 2014, Biosensors & bioelectronics.

[4]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[5]  H. Zuilhof,et al.  Self-assembly of high-quality covalently bound organic monolayers onto silicon. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[6]  Anthony P F Turner,et al.  Biosensors: sense and sensibility. , 2013, Chemical Society reviews.

[7]  Katharina Gaus,et al.  Modifying Porous Silicon with Self‐Assembled Monolayers for Biomedical Applications: The Influence of Surface Coverage on Stability and Biomolecule Coupling , 2008 .

[8]  Jiří Homola,et al.  Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications , 2015, Analytical and Bioanalytical Chemistry.

[9]  Y. Apeloig,et al.  Mechanism of the Acid-Catalyzed Si−O Bond Cleavage in Siloxanes and Siloxanols. A Theoretical Study , 2002 .

[10]  M. Houška,et al.  Poly(ethylene oxide) layers grafted to dopamine-melanin anchoring layer: stability and resistance to protein adsorption. , 2011, Biomacromolecules.

[11]  Shaoyi Jiang,et al.  Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. , 2010, Biomaterials.

[12]  James S. Wilkinson,et al.  Integrated optical Mach-Zehnder interferometers as simazine immunoprobes , 1997 .

[13]  S. Mariani,et al.  Bioanalytical approaches for the detection of single nucleotide polymorphisms by Surface Plasmon Resonance biosensors. , 2014, Biosensors & bioelectronics.

[14]  Andrea M. Armani,et al.  Bioconjugation Strategies for Microtoroidal Optical Resonators , 2010, Sensors.

[15]  Jiří Homola,et al.  Enhancement of affinity-based biosensors: effect of sensing chamber geometry on sensitivity. , 2013, Lab on a chip.

[16]  Karin Schroën,et al.  Covalent biofunctionalization of silicon nitride surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[17]  X. Le Roux,et al.  Direct and Sensitive Phase Readout for Integrated Waveguide Sensors , 2013, IEEE Photonics Journal.

[18]  Karin Schroën,et al.  Tailor-made functionalization of silicon nitride surfaces. , 2004, Journal of the American Chemical Society.

[19]  K. Kawaguchi,et al.  Integrated optical dual Mach-Zehnder interferometer sensor , 2001, Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557).

[20]  Chul Huh,et al.  Label-free optical biosensing using a horizontal air-slot SiNx microdisk resonator. , 2010, Optics express.

[21]  B H Schneider,et al.  Optical chip immunoassay for hCG in human whole blood. , 2000, Biosensors & bioelectronics.

[22]  D. Suarez,et al.  Detection of avian influenza virus using an interferometric biosensor , 2007, Analytical and bioanalytical chemistry.

[23]  A. Ksendzov,et al.  Integrated optics ring-resonator sensors for protein detection. , 2005, Optics letters.

[24]  J. Greve,et al.  Fast, ultrasensitive virus detection using a Young interferometer sensor. , 2007, Nano letters.

[25]  O. Seitz,et al.  Wet chemical surface functionalization of oxide-free silicon , 2012 .

[26]  Amadeu Griol,et al.  Label-free optical biosensing with slot-waveguides. , 2008, Optics letters.

[27]  An interferometric biosensor composed of a prism-chamber assembly and a composite waveguide with a Ta2O5 nanometric layer , 2011 .

[28]  Fan Yang,et al.  Dual polarisation interferometry for real-time, label-free detection of interaction of mercury(II) with mercury-specific oligonucleotides. , 2012, Chemical communications.

[29]  N. O’Brien-Simpson,et al.  Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates , 2015 .

[30]  G. Hermanson Chapter 3 – The Reactions of Bioconjugation , 2013 .

[31]  Ioannis Raptis,et al.  Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing. , 2010, Optics express.

[32]  Aydogan Ozcan,et al.  Emerging Technologies for Next-Generation Point-of-Care Testing. , 2015, Trends in biotechnology.

[33]  G Jobst,et al.  Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: theory and monolithic implementation. , 2014, Optics express.

[34]  R. Ray,et al.  Hepatitis C virus infection, microRNA and liver disease progression. , 2013, World journal of hepatology.

[35]  Toshifumi Takeuchi,et al.  Label-free detection of glycoproteins using reflectometric interference spectroscopy-based sensing system with upright episcopic illumination , 2011 .

[36]  J. Homola,et al.  Label-free biosensing in complex media: a referencing approach. , 2013, Analytical chemistry.

[37]  M. Houška,et al.  Optical biosensors for real-time measurement of analytes in blood plasma. , 2002, Biosensors & bioelectronics.

[38]  Paul Lambeck,et al.  Integrated optical sensors for the chemical domain , 2001 .

[39]  P. Bernstein,et al.  Surface plasmon resonance (SPR)-based biosensor technology for the quantitative characterization of protein-carotenoid interactions. , 2015, Archives of biochemistry and biophysics.

[40]  Luke P. Lee,et al.  Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). , 2011, Lab on a chip.

[41]  Roel Baets,et al.  SOI optical microring resonator with poly(ethylene glycol) polymer brush for label-free biosensor applications. , 2009, Biosensors & bioelectronics.

[42]  María-José Bañuls,et al.  Chemical surface modifications for the development of silicon-based label-free integrated optical (IO) biosensors: a review. , 2013, Analytica chimica acta.

[43]  J. Youngblood,et al.  Optimization of silica silanization by 3-aminopropyltriethoxysilane. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[44]  Neil Genzlinger A. and Q , 2006 .

[45]  Zach DeVito,et al.  Opt , 2017 .

[46]  Laura M. Lechuga,et al.  Direct Detection of Protein Biomarkers in Human Fluids Using Site-Specific Antibody Immobilization Strategies , 2014, Sensors.

[47]  L. Lechuga,et al.  Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor , 2016 .

[48]  Á. Maquieira,et al.  Chemical silicon surface modification and bioreceptor attachment to develop competitive integrated photonic biosensors , 2012, Analytical and Bioanalytical Chemistry.

[49]  Laura M. Lechuga,et al.  Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices , 2006 .

[50]  M. Free,et al.  Current trends in molecular functional monolayers , 2015 .

[51]  Christoph A. Merten,et al.  Fragmentation of DNA in a sub-microliter microfluidic sonication device. , 2012, Lab on a chip.

[52]  Marek Piliarik,et al.  Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. , 2010, Biosensors & bioelectronics.

[53]  Ángel Maquieira,et al.  Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. , 2010, Optics express.

[54]  Laura M. Lechuga,et al.  Towards the design of universal immunosurfaces for SPR-based assays: A review , 2016 .

[55]  R. Heideman,et al.  Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system , 1999 .

[56]  Ankur Duarah,et al.  Contaminant detection in treated water using Optiqua’s MiniLab™ biosensing system: a case study for Bisphenol A , 2015 .

[57]  Guo-Qiang Lo,et al.  Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity. , 2012, Optics express.

[58]  Laura M. Lechuga,et al.  Integrated optical devices for lab‐on‐a‐chip biosensing applications , 2012 .

[59]  Laura M Lechuga,et al.  All-optical phase modulation for integrated interferometric biosensors. , 2012, Optics express.

[60]  Mohammed Zourob,et al.  Recognition Receptors in Biosensors , 2010 .

[61]  Guo-Qiang Lo,et al.  Mach-Zehnder interferometer (MZI) point-of-care system for rapid multiplexed detection of microRNAs in human urine specimens. , 2015, Biosensors & bioelectronics.

[62]  B H Schneider,et al.  Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantification of nucleic acids, proteins, and pathogens. , 1997, Clinical chemistry.

[63]  Shaoyi Jiang,et al.  Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. , 2005, Journal of the American Chemical Society.

[64]  Performance investigation of an integrated Young interferometer sensor using a novel prism-chamber assembly. , 2010, Optics express.

[65]  M. A. Otte,et al.  Trends and challenges of refractometric nanoplasmonic biosensors: a review. , 2014, Analytica chimica acta.

[66]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[67]  María-José Bañuls,et al.  Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors. , 2010, Biosensors & bioelectronics.

[68]  David E. Williams,et al.  Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding. , 2010, Colloids and surfaces. B, Biointerfaces.

[69]  A. Undar,et al.  A microfluidic device for continuous, real time blood plasma separation. , 2006, Lab on a chip.

[70]  Francesco Berti,et al.  Surface plasmon resonance for the characterization of bacterial polysaccharide antigens: a review , 2014 .

[71]  Katrin Schmitt,et al.  Direct detection of tuberculosis infection in blood serum using three optical label-free approaches , 2008 .

[72]  Ángel Maquieira,et al.  Dual-polarization interferometry: a novel technique to light up the nanomolecular world. , 2015, Chemical reviews.

[73]  Dusan Losic,et al.  Ultrasensitive nanoporous interferometric sensor for label-free detection of gold(III) ions. , 2013, ACS applied materials & interfaces.

[74]  L M Lechuga,et al.  Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis , 2011, Journal of Lightwave Technology.

[75]  Laura M Lechuga,et al.  A comparative study of in-flow and micro-patterning biofunctionalization protocols for nanophotonic silicon-based biosensors. , 2013, Journal of Colloid and Interface Science.

[76]  C. Bala,et al.  Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis , 2015, Critical reviews in analytical chemistry.

[77]  G. Calin,et al.  MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients , 2015, British Journal of Cancer.

[78]  Lauris Kaplinski,et al.  Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators. , 2012, Biosensors & bioelectronics.

[79]  Laura M. Lechuga,et al.  Linear readout of integrated interferometric biosensors using a periodic wavelength modulation , 2015 .

[80]  W. Marsden I and J , 2012 .

[81]  K. Misiakos,et al.  All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor. , 2014, Optics express.

[82]  M. Mäkelä,et al.  New molecular virus detection methods and their clinical value in lower respiratory tract infections in children☆ , 2012, Paediatric Respiratory Reviews.

[83]  Andras Hamori,et al.  Grating coupled optical waveguide interferometer for label-free biosensing , 2011 .

[84]  Guo-Qiang Lo,et al.  Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide , 2013 .

[85]  D. P. Campbell,et al.  Detection of vapor phase trinitrotoluene in the parts-per-trillion range using waveguide interferometry , 2010 .

[86]  Malcolm Buckle,et al.  Efficient Antifouling Surface for Quantitative Surface Plasmon Resonance Based Biosensor Analysis , 2012, PloS one.

[87]  Edward O Haeggström,et al.  Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis. , 2005, Ultrasound in medicine & biology.

[88]  T. Desai,et al.  AFM analysis of organic silane thin films for bioMEMS applications , 2003 .

[89]  K. Abu-Amero,et al.  Utility of Circulating MicroRNAs as Clinical Biomarkers for Cardiovascular Diseases , 2015, BioMed research international.

[90]  Ester Segal,et al.  Engineering nanostructured porous SiO2 surfaces for bacteria detection via "direct cell capture". , 2011, Analytical chemistry.

[91]  Bin Guan,et al.  Protease detection using a porous silicon based Bloch surface wave optical biosensor. , 2010, Optics express.

[92]  Yaron Paz,et al.  Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications , 2011, Beilstein journal of nanotechnology.

[93]  J Greve,et al.  Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor. , 2004, Biosensors & bioelectronics.

[94]  Shaoyi Jiang,et al.  Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. , 2006, Biomacromolecules.

[95]  Laura M Lechuga,et al.  Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. , 2012, Lab on a chip.

[96]  Y. Yoon,et al.  A continuous flow micro filtration device for plasma/blood separation using submicron vertical pillar gap structures , 2014 .

[97]  Luca De Stefano,et al.  DNA Optical Detection Based on Porous Silicon Technology: from Biosensors to Biochips , 2007, Sensors (Basel, Switzerland).

[98]  G. Stemme,et al.  A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips. , 2010, Lab on a chip.

[99]  Lorenzo Pavesi,et al.  Asymmetric Mach–Zehnder Interferometer Based Biosensors for Aflatoxin M1 Detection , 2016, Biosensors.

[100]  Lin Wu,et al.  Self-assembled monolayers of perfluoroalkylsilane on plasma-hydroxylated silicon substrates , 2015 .

[101]  Laura M. Lechuga,et al.  Magneto-optical phase modulation in integrated Mach–Zehnder interferometric sensors , 2007 .

[102]  A Densmore,et al.  Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection. , 2009, Optics letters.

[103]  Francesca Magno,et al.  Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides. , 2005, Optics express.

[104]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[105]  Thommey P. Thomas,et al.  Real-time biomolecular binding detection using a sensitive photonic crystal biosensor. , 2010, Analytical chemistry.

[106]  N. Freeman,et al.  Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. , 2004, Analytical biochemistry.