Globally Optimal Least-Squares ARMA Model Identification is an Eigenvalue Problem

We show that globally optimal least-squares identification of autoregressive moving-average (ARMA) models is an eigenvalue problem (EP). The first order optimality conditions of this identification problem constitute a system of multivariate polynomial equations, in which most variables appear linearly. This system is basically a multiparameter eigenvalue problem (MEP), which we solve by iteratively building a so-called block Macaulay matrix, the null space of which is block multi-shift-invariant. The set of all stationary points of the optimization problem, i.e., the <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-tuples of eigenvalues and eigenvectors of the MEP, follows from a standard EP related to the multidimensional realization problem in that null space. At least one of these <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-tuples corresponds to the global minimum of the original least-squares objective function. Contrary to existing heuristic techniques, this approach yields the globally optimal parameters of the ARMA model. We provide a numerical example to illustrate the new identification method.

[1]  Bart De Moor,et al.  Multidimensional realisation theory and polynomial system solving , 2018, Int. J. Control.

[2]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[3]  Philippe Dreesen Back to the Roots: Polynomial System Solving Using Linear Algebra (Back to the Roots: Stelsels veeltermvergelijkingen oplossen met lineaire algebra) , 2013 .

[5]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[6]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[7]  G. Yule On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers , 1927 .

[8]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[9]  Β. L. HO,et al.  Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .

[10]  P. Whittle,et al.  Hypothesis-Testing in Time Series Analysis. , 1952 .

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[13]  A. M. Walker Note on a Generalization of the Large Sample Goodness of Fit Test for Linear Autoregressive Schemes , 1950 .

[14]  Eugen Slutzky Summation of random causes as the source of cyclic processes , 1937 .

[15]  F. V. Atkinson,et al.  Multiparameter eigenvalue problems , 1972 .

[16]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[17]  ByoungSeon Choi,et al.  Arma Model Identification , 1992 .