ISPH–PBD: coupled simulation of incompressible fluids and deformable bodies

We present an efficient and stable method for simulating the two-way coupling of incompressible fluids and deformable bodies. In our method, the fluid is represented by particles, and simulated using divergence-free incompressible smoothed-particle hydrodynamics (ISPH). The deformable bodies are represented by polygonal meshes, where the elastic deformations are simulated using a position-based dynamics scheme. Our technique enforces incompressibility on the fluid using divergence-free constraints on the velocity field, while it effectively simulates the physical features of deformable bodies. Most current ISPH methods are struggling with the issue of free-surface boundary conditions. We handle this problem by introducing a novel free-surface formulation, where our free-surface model obviates the need to identify the surface particles. For the interaction between the fluid and the deformable solids, we model the forces that both phases, fluid and solid, exert upon each other. We demonstrate that our approach effectively handles complex coupling scenarios between fluids and thin deformable shells or highly deformable solids, and produces plausible results.

[1]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.

[2]  Alain Fournier,et al.  A simple model of ocean waves , 1986, SIGGRAPH.

[3]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[4]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[5]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[6]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[7]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[8]  Victor B. Zordan,et al.  An extended partitioned method for conservative solid-fluid coupling , 2018, ACM Trans. Graph..

[9]  Dinesh K. Pai,et al.  Eulerian solid simulation with contact , 2011, ACM Trans. Graph..

[10]  Martin Servin,et al.  Constraint Fluids , 2012, IEEE Transactions on Visualization and Computer Graphics.

[11]  Ronald Fedkiw,et al.  Accurate Tangential Velocities For Solid Fluid Coupling , 2009 .

[12]  Andreas Kolb,et al.  Infinite continuous adaptivity for incompressible SPH , 2017, ACM Trans. Graph..

[13]  Matthias Teschner,et al.  Pressure Boundaries for Implicit Incompressible SPH , 2018, ACM Trans. Graph..

[14]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[15]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[16]  Jérémie Allard,et al.  Eulerian Contact for Versatile Collision Processing , 2007 .

[17]  Matthias Teschner,et al.  Coupling elastic solids with smoothed particle hydrodynamics fluids , 2013, Comput. Animat. Virtual Worlds.

[18]  FournierAlain,et al.  A simple model of ocean waves , 1986 .

[19]  Greg Turk,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, ACM Trans. Graph..

[20]  Markus H. Gross,et al.  Optimized Spatial Hashing for Collision Detection of Deformable Objects , 2003, VMV.

[21]  Yizhou Yu,et al.  Particle-based simulation of granular materials , 2005, SCA '05.

[22]  Jan Bender,et al.  Density maps for improved SPH boundary handling , 2017, Symposium on Computer Animation.

[23]  S. J. Lind,et al.  Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves , 2012, J. Comput. Phys..

[24]  Benedict D. Rogers,et al.  Incompressible SPH (ISPH) with fast Poisson solver on a GPU , 2018, Comput. Phys. Commun..

[25]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[26]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[27]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[28]  Miguel A. Otaduy,et al.  A Survey on Position‐Based Simulation Methods in Computer Graphics , 2014, Comput. Graph. Forum.

[29]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[30]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[31]  Theodore Kim,et al.  Eulerian solid-fluid coupling , 2016, ACM Trans. Graph..

[32]  Philip Dutré,et al.  Unified SPH model for fluid-shell simulations , 2008, SIGGRAPH '08.

[33]  Robert Bridson,et al.  Fluid simulation: SIGGRAPH 2007 course notesVideo files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[34]  Gaurav Tomar,et al.  Volume conservation issues in incompressible smoothed particle hydrodynamics , 2015, J. Comput. Phys..

[35]  Marco Fratarcangeli,et al.  Scalable Partitioning for Parallel Position Based Dynamics , 2015, Comput. Graph. Forum.

[36]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[37]  Nahyup Kang,et al.  Incompressible SPH using the Divergence‐Free Condition , 2014, Comput. Graph. Forum.

[38]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[39]  Adrian Sandu,et al.  Fluid Simulation For Computer Graphics: A Tutorial in Grid Based and Particle Based Methods , 2009 .

[40]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[41]  Ronald Fedkiw,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH '05.

[42]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[43]  Christopher Batty,et al.  A simple finite volume method for adaptive viscous liquids , 2011, SCA '11.

[44]  Omar Zarifi,et al.  A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies , 2017, Symposium on Computer Animation.

[45]  Jan Bender,et al.  An optimized source term formulation for incompressible SPH , 2018, The Visual Computer.

[46]  Ross T. Whitaker,et al.  Particle‐Based Simulation of Fluids , 2003, Comput. Graph. Forum.

[47]  Adam W. Bargteil,et al.  Physics-based animation of large-scale splashing liquids , 2013, ACM Trans. Graph..

[48]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[49]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[50]  E. Guendelman,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH 2005.

[51]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[52]  Matteo Antuono,et al.  Theoretical Analysis of the No-Slip Boundary Condition Enforcement in SPH Methods , 2011 .

[53]  Akira Nishida,et al.  Experience in Developing an Open Source Scalable Software Infrastructure in Japan , 2010, ICCSA.

[54]  Takahiro Harada,et al.  Real-time Fluid Simulation Coupled with Cloth , 2007, TPCG.

[55]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[56]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[57]  A OtaduyMiguel,et al.  A Survey on Position-Based Simulation Methods in Computer Graphics , 2014 .

[58]  Jan Bender,et al.  Divergence-free smoothed particle hydrodynamics , 2015, Symposium on Computer Animation.

[59]  Jean-Michel Dischler,et al.  Simulating Fluid-Solid Interaction , 2003, Graphics Interface.

[60]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.

[61]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[62]  Arne Bøckmann,et al.  Incompressible SPH for free surface flows , 2012 .

[63]  Matthias Müller,et al.  XPBD: position-based simulation of compliant constrained dynamics , 2016, MIG.

[64]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[65]  Ronald Fedkiw,et al.  Two-way coupling of fluids to reduced deformable bodies , 2016, Symposium on Computer Animation.

[66]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, ACM Trans. Graph..

[67]  Matthias Teschner,et al.  An Implicit SPH Formulation for Incompressible Linearly Elastic Solids , 2018, Comput. Graph. Forum.

[68]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[69]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[70]  James F. O'Brien,et al.  Simultaneous coupling of fluids and deformable bodies , 2006, SCA '06.

[71]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[72]  Ronald Fedkiw,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, ACM Trans. Graph..

[73]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.