Design of robust reliable H∞ output feedback control for a class of uncertain linear systems with sensor failure

The problem of robust reliable H∞ output feedback controller design is investigated for uncertain linear systems with sensor failures within a prespecified subset of sensors. The uncertainty considered here is time-varying norm-bounded parameter uncertainty in the state matrix. The output of a faulty sensor is assumed to be any arbitrary energy-bounded signal. An observer-based output feedback control design is presented which stabilizes the plant and guarantees an H∞ norm bound on attenuation of augmented disturbances, for all admissible uncertainties as well as sensor failures. The construction of the observer-based output feedback control law requires the positive-definite solutions of two algebraic Riccati equations. The result can be regarded as an extension of existing results on robust H∞ control and reliable H∞ control of uncertain linear systems.