A Simple Algorithm for Complete Motion Planning of Translating Polyhedral Robots

We present a new sampling-based algorithm for complete motion planning. Our algorithm relies on computing a star-shaped roadmap of the free space. We partition the free space into star-shaped regions such that a single point, called the guard, can see every point in the star-shaped region. The resulting set of guards capture the intra-region connectivity—the connectivity between points belonging to the same star-shaped region. We capture the inter-region connectivity by computing connectors that link guards of adjacent regions. The guards and connectors are combined to obtain the star-shaped roadmap. We present an efficient algorithm to compute the roadmap in a deterministic manner without explicit computation of the free space. We show that the star-shaped roadmap captures the connectivity of the free space, thereby enabling us to perform complete motion planning. Our approach is relatively simple to implement. We apply our approach to perform motion planning of robots with translational and rotational degrees of freedom (dof). We highlight its performance in challenging scenarios with narrow passages or when there is no collision-free path for robots with low degrees of freedom.

[1]  Dinesh Manocha,et al.  A Simple Algorithm for Complete Motion Planning of Translating Polyhedral Robots , 2006, WAFR.

[2]  Mark H. Overmars,et al.  Approximating Voronoi Diagrams of Convex Sites in any Dimension , 1998, Int. J. Comput. Geom. Appl..

[3]  B. Donald Motion Planning with Six Degrees of Freedom , 1984 .

[4]  Lydia E. Kavraki,et al.  Randomized preprocessing of configuration for fast path planning , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[5]  Lydia E. Kavraki,et al.  On finding narrow passages with probabilistic roadmap planners , 1998 .

[6]  Micha Sharir,et al.  An automatic motion planning system for a convex polygonal mobile robot in 2-dimensional polygonal space , 1988, SCG '88.

[7]  Steven M. LaValle,et al.  Quasi-randomized path planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[8]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[9]  Dinesh Manocha,et al.  Collision and Proximity Queries , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[10]  Micha Sharir,et al.  On translational motion planning in 3-space , 1994, SCG '94.

[11]  Mark H. Overmars,et al.  The Gaussian sampling strategy for probabilistic roadmap planners , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[12]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[13]  Der-Tsai Lee Proximity and reachability in the plane. , 1978 .

[14]  Micha Sharir,et al.  Retraction: A new approach to motion-planning , 1983, STOC.

[15]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[16]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[17]  J. Wilhelms,et al.  Topological considerations in isosurface generation extended abstract , 1990, VVS.

[18]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[19]  Mark H. Overmars,et al.  A probabilistic learning approach to motion planning , 1995 .

[20]  Lydia E. Kavraki,et al.  A Random Sampling Scheme for Path Planning , 1997, Int. J. Robotics Res..

[21]  Christoph M. Hoffmann D-Cubed's Dimensional Constraint Manager , 2001, J. Comput. Inf. Sci. Eng..

[22]  Ming C. Lin,et al.  Practical Local Planning in the Contact Space , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[23]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[24]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[25]  Dinesh Manocha,et al.  Topology preserving surface extraction using adaptive subdivision , 2004, SGP '04.

[26]  Ming C. Lin,et al.  Accurate and Fast Proximity Queries Between Polyhedra Using Convex Surface Decomposition , 2001, Comput. Graph. Forum.

[27]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[28]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[29]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[30]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[31]  Leonidas J. Guibas,et al.  Disconnection proofs for motion planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[32]  David Hsu,et al.  The bridge test for sampling narrow passages with probabilistic roadmap planners , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[33]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[34]  Mark H. Overmars,et al.  Motion planning amidst fat obstacles (extended abstract) , 1994, SCG '94.

[35]  David G. Kirkpatrick,et al.  Computing the intersection-depth of polyhedra , 1993, Algorithmica.

[36]  Jean-Claude Latombe,et al.  Motion Planning: A Journey of Robots, Molecules, Digital Actors, and Other Artifacts , 1999, Int. J. Robotics Res..

[37]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[38]  Daniel Vallejo,et al.  OBPRM: an obstacle-based PRM for 3D workspaces , 1998 .

[39]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[40]  Thierry Siméon,et al.  Visibility-based probabilistic roadmaps for motion planning , 2000, Adv. Robotics.

[41]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[42]  Leonidas J. Guibas,et al.  Computing the visibility graphs of n line segments in O(nn) time , 1985, Bull. EATCS.

[43]  Elisha Sacks,et al.  Practical Sliced Configuration Spaces for Curved Planar Pairs , 1999, Int. J. Robotics Res..

[44]  Steven M. LaValle,et al.  On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[45]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[46]  Emo WELZL,et al.  Constructing the Visibility Graph for n-Line Segments in O(n²) Time , 1985, Inf. Process. Lett..

[47]  Lydia E. Kavraki,et al.  Analysis of probabilistic roadmaps for path planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[48]  J. Wilhelms,et al.  Topological considerations in isosurface generation extended abstract , 1990, SIGGRAPH 1990.

[49]  Dinesh Manocha,et al.  Fast C-obstacle query computation for motion planning , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[50]  D. Manocha,et al.  Accurate sampling-based algorithms for surface extraction and motion planning , 2005 .

[51]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[52]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[53]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[54]  Dan Halperin,et al.  Robust Geometric Computing in Motion , 2002, Int. J. Robotics Res..

[55]  Howie Choset,et al.  Principles of Robot Motion: Theory, Algorithms, and Implementation ERRATA!!!! 1 , 2007 .

[56]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[57]  Jean-Claude Latombe,et al.  Constraint reformulation in a hierarchical path planner , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[58]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[59]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[60]  A. Frank van der Stappen,et al.  Motion planning amidst fat obstacles , 1993 .

[61]  Micha Sharir,et al.  Algorithmic motion planning , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[62]  Christoph M. Hoffmann,et al.  Robustness in Geometric Computations , 2001, J. Comput. Inf. Sci. Eng..