Bézier Techniques
暂无分享,去创建一个
[1] Gerald E. Farin,et al. A geometric interpretation of the diagonal of a tensor-product Bézier volume , 1999, Comput. Aided Geom. Des..
[2] Wolfgang Dahmen,et al. Subdivision algorithms converge quadratically , 1986 .
[3] Gian-Carlo Rota,et al. Linear Operators and Approximation Theory. , 1965 .
[4] John A. Gregory,et al. Convexity of Bézier nets on sub-triangles , 1991, Comput. Aided Geom. Des..
[5] R. Goldman. Using degenerate Bézier triangles and tetrahedra to subdivide Bézier curves , 1982 .
[6] A. R. Forrest,et al. The twisted cubic curve: a computer-aided geometric design approach , 1980 .
[7] Ronald Goldman,et al. An urnful of blending functions , 1983, IEEE Computer Graphics and Applications.
[8] Günter Aumann,et al. Interpolation with developable Bézier patches , 1991, Comput. Aided Geom. Des..
[9] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[10] A. Robin Forrest,et al. Interactive interpolation and approximation by Bezier polynomials , 1972, Comput. J..
[11] Ingrid Brueckner. Construction of Bézier points of quadrilaterals from those of triangles , 1980 .
[12] J. Hoschek. Offset curves in the plane , 1985 .
[13] Gerald Farin,et al. Link between Be´zier and lagrange curve and surface schemes , 1986 .
[14] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[15] Klaus Spitzmüller,et al. Technical note Partial derivatives of Bbzier surfaces , 2003 .
[16] P. Barry,et al. Three examples of dual properties of Be´zier curves , 1989 .
[17] Gerald E. Farin,et al. The essentials of CAGD , 2000 .
[18] Philip J. Davis,et al. The convexity of Bernstein polynomials over triangles , 1984 .
[19] Paul de Faget de Casteljau. De Casteljau's autobiography: My time at Citroën , 1999, Comput. Aided Geom. Des..
[20] Hartmut Prautzsch,et al. Arbitrarily high degree elevation of Bézier representations , 1996, Comput. Aided Geom. Des..
[21] Juan Manuel Peña,et al. Linear convexity conditions for rectangular and triangular Bernstein-Bézier surfaces , 1997, Comput. Aided Geom. Des..
[22] Natasha Dejdumrong,et al. Efficient algorithms for Bézier curves , 2000, Comput. Aided Geom. Des..
[23] Elaine COHEN,et al. Rates of convergence of control polygons , 1985, Comput. Aided Geom. Des..
[24] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[25] Yap Siong Chua. Bézier brushstrokes , 1990, Comput. Aided Des..
[26] Nickolas S. Sapidis,et al. Visualization of curvature plots and evaluation of fairness: an analysis of the effect of 'scaling' , 1997, Comput. Aided Geom. Des..
[27] P. Bézier. Numerical control : mathematics and applications , 1972 .
[28] Dieter Lasser,et al. Grundlagen der geometrischen Datenverarbeitung , 1989 .
[29] A. W. Nutbourne,et al. Curvature profiles for plane curves , 1972, Comput. Aided Des..
[30] Xuguang Wang,et al. Rational hodographs , 1987, Comput. Aided Geom. Des..
[31] Alan Pipes. Interactive techniques in CAD: 21–23 September 1978, Palazzo dei Congressi, Bologna, Italy. Organized by ACM Italian Chapter , 1979 .
[32] Matthias Eck,et al. Least squares degree reduction of Bézier curves , 1995, Comput. Aided Des..
[33] Marc Daniel,et al. The numerical problem of using Bézier curves and surfaces in the power basis , 1989, Comput. Aided Geom. Des..
[34] Ron Goldman,et al. Linear subdivision is strictly a polynomial phenomenon , 1984, Comput. Aided Geom. Des..
[35] Wolfgang Böhm,et al. On cubics: A survey , 1982, Comput. Graph. Image Process..
[36] Yongming Li,et al. Basis conversion among Bézier, Tchebyshev and Legendre , 1998, Comput. Aided Geom. Des..
[37] Yu-Yu Feng,et al. Rates of convergence of Bézier net over triangles , 1987, Comput. Aided Geom. Des..
[38] P. Bézier. General distortion of an ensemble of biparametric surfaces , 1978 .
[39] Rida T. Farouki,et al. A Hierarchy of Geometric Forms , 1985, IEEE Computer Graphics and Applications.
[40] Wendelin L. F. Degen. The Types of Triangular Bézier Surfaces , 1994, IMA Conference on the Mathematics of Surfaces.
[41] Gerald Farin,et al. SOME ASPECTS OF CAR BODY DESIGN AT DAIMLER-BENZ. , 1983 .
[42] Wendelin L. F. Degen,et al. Some remarks on Bézier curves , 1988, Comput. Aided Geom. Des..
[43] Geng-zhe Chang,et al. An improved condition for the convexity of Bernstein-Bézier surfaces over triangles , 1984, Comput. Aided Geom. Des..
[44] Thomas W. Sederberg,et al. Free-form deformation of solid geometric models , 1986, SIGGRAPH.
[45] Rida T. Farouki,et al. On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..
[46] Wolfgang Böhm,et al. On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..
[47] Wolfgang Böhm. Sudividing multivariate splines , 1983 .
[48] Tony DeRose,et al. A Tutorial Introduction to Blossoming , 1991 .
[49] Dieter Lasser,et al. Intersection of parametric surfaces in the Bernstein—Be´zier representation , 1986 .
[50] John A. Roulier,et al. Bézier curves of positive curvature , 1988, Comput. Aided Geom. Des..
[51] Faget de Casteljau,et al. Shape mathematics and CAD , 1986 .
[52] W. Böhm,et al. Generating the Bézier points of B-spline curves and surfaces , 1981 .
[53] P. Barry,et al. What is the natural generalization of a Be´zier curve? , 1989 .
[54] Jörg Peters,et al. Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon , 1999, Comput. Aided Geom. Des..
[55] Wolfgang Böhm. Bézier presentation of airfoils , 1987, Comput. Aided Geom. Des..
[56] Martin Ahlers,et al. Role of Bézier curves and surfaces in the volkswagen CAD approach from 1967 to today , 1990, Comput. Aided Des..
[57] Thomas A. Foley,et al. The hybrid quintic Bézier tetrahedron , 1997, Comput. Aided Geom. Des..
[58] Guido Brunnett,et al. The geometry of optimal degree reduction of Bézier curves , 1996, Comput. Aided Geom. Des..
[59] Dieter Lasser,et al. Bernstein-Bézier representation of volumes , 1985, Comput. Aided Geom. Des..
[60] Helmut Pottmann,et al. Developable rational Bézier and B-spline surfaces , 1995, Comput. Aided Geom. Des..
[61] Louis J. Nachman. A note on control polygons and derivatives , 1991, Comput. Aided Geom. Des..
[62] Thomas Reuding,et al. Bézier patches on cubic grid curves - An application to the preliminary design of a yacht hull surface , 1989, Comput. Aided Geom. Des..
[63] Nadim M. Aziz,et al. Bezier surface/surface intersection , 1990, IEEE Computer Graphics and Applications.
[64] A. J. Worsey,et al. Degree reduction of Be´zier curves , 1988 .
[65] Hans Hagen. Bezier-curves with curvature and torsion continuity , 1986 .
[66] Matthias Eck,et al. Degree reduction of Bézier curves , 1993, Comput. Aided Geom. Des..
[67] Tony DeRose,et al. Computing values and derivatives of Bézier and B-spline tensor products , 1995, Comput. Aided Geom. Des..
[68] H. P. Seidel. A general subdivision theorem for Be´zier triangles , 1989 .
[69] P. Chambers,et al. Interactive curves and surfaces , 1996, Technology-Based Re-Engineering Engineering Education Proceedings of Frontiers in Education FIE'96 26th Annual Conference.
[70] Carlo H. Séquin,et al. Local surface interpolation with Bézier patches: errata and improvements , 1991, Comput. Aided Geom. Des..
[71] D. Hilbert,et al. Geometry and the Imagination , 1953 .
[72] Rida T. Farouki,et al. Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..
[73] J. Gallier. Curves and surfaces in geometric modeling: theory and algorithms , 1999 .
[74] Eberhard Eisele,et al. Best approximations of symmetric surfaces by biquadratic Bézier surfaces , 1994, Comput. Aided Geom. Des..
[75] Jörg Peters,et al. Polynomial degree reduction in the L2-norm equals best Euclidean approximation of Bézier coefficients , 1999, Comput. Aided Geom. Des..
[76] B. Barsky,et al. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .
[77] Ljubiša Kocić. Modification of Bézier curves and surfaces by degree-elevation technique , 1991 .
[78] Zheng-bin Wang,et al. An improved condition for the convexity and positivity of Bernstein-Bézier surfaces over triangles , 1988, Comput. Aided Geom. Des..
[79] Ron Goldman,et al. Recursive subdivision without the convex hull property , 1986, Comput. Aided Geom. Des..
[80] D. Marsh. Applied Geometry for Computer Graphics and CAD , 1999 .
[81] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[82] Gerald E. Farin,et al. Curvature and the fairness of curves and surfaces , 1989, IEEE Computer Graphics and Applications.
[83] P. E. Bezier,et al. Example of an existing system in the motor industry: the Unisurf system , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[84] A. Robin Forrest,et al. Interactive interpolation and approximation by Bézier polynomials , 1990, Comput. Aided Des..
[85] Rida T. Farouki,et al. On the stability of transformations between power and Bernstein polynomial forms , 1991, Comput. Aided Geom. Des..
[86] Lyle Ramshaw,et al. Béziers and B-splines as Multiaffine Maps , 1988 .
[87] Shi-Min Hu. Conversion of a tringular Bézier patch into three rectangular Bézier patches , 1996, Comput. Aided Geom. Des..