An Improved V-MDAV Algorithm for l-Diversity

V-MDAV algorithm is a high efficient multivariate microaggregation algorithm and the anonymity table generated by the algorithm has high data quality. But it does not consider the sensitive attribute diversity, so the anonymity table generated by the algorithm cannot resist homogeneity attack and background knowledge attack. To solve the problem, the paper proposes an improved V-MDAV algorithm, which first generates groups satisfying l-diversity, then extends these groups to the size between l and 2l-1 to achieve optimal k-partition. Experimental results indicate that the algorithm can generate anonymity table satisfying sensitive attribute diversity efficiently.

[1]  Josep Domingo-Ferrer,et al.  A polynomial-time approximation to optimal multivariate microaggregation , 2008, Comput. Math. Appl..

[2]  A. Solanas,et al.  V-MDAV : A Multivariate Microaggregation With Variable Group Size , 2006 .

[3]  Josep Domingo-Ferrer,et al.  Practical Data-Oriented Microaggregation for Statistical Disclosure Control , 2002, IEEE Trans. Knowl. Data Eng..

[4]  Michael J. Laszlo,et al.  Minimum spanning tree partitioning algorithm for microaggregation , 2005, IEEE Transactions on Knowledge and Data Engineering.

[5]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[6]  Josep Domingo-Ferrer,et al.  Microaggregation for Database and Location Privacy , 2006, NGITS.

[7]  Ninghui Li,et al.  Towards optimal k-anonymization , 2008, Data Knowl. Eng..

[8]  Ashwin Machanavajjhala,et al.  l-Diversity: Privacy Beyond k-Anonymity , 2006, ICDE.

[9]  Pierangela Samarati,et al.  Protecting Respondents' Identities in Microdata Release , 2001, IEEE Trans. Knowl. Data Eng..

[10]  Zude Li,et al.  Towards an Anti-inference (K, l)-Anonymity Model with Value Association Rules , 2006, DEXA.

[11]  Raymond Chi-Wing Wong,et al.  (α, k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing , 2006, KDD '06.

[12]  Pierangela Samarati,et al.  Generalizing Data to Provide Anonymity when Disclosing Information , 1998, PODS 1998.

[13]  Chin-Chen Chang,et al.  TFRP: An efficient microaggregation algorithm for statistical disclosure control , 2007, J. Syst. Softw..

[14]  V. Torra,et al.  Comparing SDC Methods for Microdata on the Basis of Information Loss and Disclosure Risk , 2004 .

[15]  Josep Domingo-Ferrer,et al.  On the complexity of optimal microaggregation for statistical disclosure control , 2001 .

[16]  Vicenç Torra,et al.  Microaggregation for Categorical Variables: A Median Based Approach , 2004, Privacy in Statistical Databases.

[17]  Ninghui Li,et al.  t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[18]  Wang Bin,et al.  K-Anonymization Approaches for Supporting Multiple Constraints , 2006 .

[19]  Latanya Sweeney,et al.  Achieving k-Anonymity Privacy Protection Using Generalization and Suppression , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[20]  Josep Domingo-Ferrer,et al.  Ordinal, Continuous and Heterogeneous k-Anonymity Through Microaggregation , 2005, Data Mining and Knowledge Discovery.