A refined r‐factor algorithm for TVD schemes on arbitrary unstructured meshes

© 2016 John Wiley & Sons, Ltd. A refined r-factor algorithm for implementing total variation diminishing (TVD) schemes on arbitrary unstructured meshes, referred to henceforth as a face-perpendicular far-upwind interpolation scheme for arbitrary meshes (FFISAM), is proposed based on an extensive review of the existing r-factor algorithms available in the literature. The design principles, as well as the respective advantages and disadvantages, of the existing algorithms are first systematically analyzed before presenting the FFISAM. The FFISAM is designed to combine the merits of various existing r-factor algorithms. The performance of the FFISAM, implemented in 10 classical TVD schemes, is evaluated against four two-dimensional pure-advection benchmark test cases where analytical solutions are available. The numerical results clearly show that the FFISAM leads to a better overall performance than the existing algorithms in terms of accuracy and convergence on arbitrary unstructured meshes for the 10 classical TVD schemes.

[1]  Liang Cheng,et al.  A review on TVD schemes and a refined flux-limiter for steady-state calculations , 2015, J. Comput. Phys..

[2]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[3]  Lian-xia Li,et al.  An improved r-factor algorithm for TVD schemes , 2008 .

[4]  Yongqi Wang,et al.  Comparisons of numerical methods with respect to convectively dominated problems , 2001 .

[5]  Ryoichi S. Amano,et al.  On a higher-order bounded discretization scheme , 2000 .

[6]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[7]  Geo.,et al.  Compact third-order limiter functions for finite volume methods , 2009, J. Comput. Phys..

[8]  Willem Hundsdorfer,et al.  Method of lines and direct discretization: a comparison for linear advection , 1994 .

[9]  K. P.,et al.  HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .

[10]  Christian Tenaud,et al.  High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations , 2004 .

[11]  P. Gaskell,et al.  Curvature‐compensated convective transport: SMART, A new boundedness‐ preserving transport algorithm , 1988 .

[12]  Fabian Denner,et al.  Compressive VOF method with skewness correction to capture sharp interfaces on arbitrary meshes , 2014, J. Comput. Phys..

[13]  Bram van Leer,et al.  Upwind-difference methods for aerodynamic problems governed by the Euler equations , 1985 .

[14]  Kamy Sepehrnoori,et al.  Application of higher-order flux-limited methods in compositional simulation , 1994 .

[15]  A. Przekwas,et al.  A comparative study of advanced shock-capturing schemes applied to Burgers' equation , 1990 .

[16]  Jingming Hou,et al.  A new TVD method for advection simulation on 2D unstructured grids , 2013 .

[17]  M. Darwish,et al.  NORMALIZED VARIABLE AND SPACE FORMULATION METHODOLOGY FOR HIGH-RESOLUTION SCHEMES , 1994 .

[18]  A. J. Przekwas,et al.  A comparative study of advanced shock-capturing shcemes applied to Burgers' equation , 1992 .

[19]  Philip L. Roe,et al.  A Well-Behaved TVD Limiter for High-Resolution Calculations of Unsteady Flow , 1997 .

[20]  Dennis N. Assanis,et al.  Evaluation of various high-order-accuracy schemes with and without flux limiters , 1993 .

[21]  Christopher William Stuteville Bruner,et al.  Parallelization of the Euler Equations on Unstructured Grids , 1997 .

[22]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[23]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[24]  Chao-An Lin,et al.  Adaptive QUICK-Based scheme to approximate convective transport , 2000 .

[25]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[26]  F. Kemm A comparative study of TVD‐limiters—well‐known limiters and an introduction of new ones , 2011 .

[27]  M. Darwish,et al.  TVD schemes for unstructured grids , 2003 .

[28]  Yan Yang,et al.  A refined volume-of-fluid algorithm for capturing sharp fluid interfaces on arbitrary meshes , 2014, J. Comput. Phys..

[29]  J. Verwer,et al.  A positive finite-difference advection scheme , 1995 .

[30]  H. Deconinck,et al.  Design principles for bounded higher-order convection schemes - a unified approach , 2007, J. Comput. Phys..

[31]  A. Gosman,et al.  High resolution NVD differencing scheme for arbitrarily unstructured meshes , 1999 .

[32]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[33]  D. Spalding A novel finite difference formulation for differential expressions involving both first and second derivatives , 1972 .

[34]  Wei Shyy,et al.  A study of finite difference approximations to steady-state, convection-dominated flow problems , 1985 .

[35]  Toshiyuki Hayase,et al.  A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures , 1992 .

[36]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[37]  Chen Yang,et al.  Assessment of different reconstruction techniques for implementing the NVSF schemes on unstructured meshes , 2014 .

[38]  B. P. Leonard,et al.  Why You Should Not Use 'Hybrid', 'Power-Law' or Related Exponential Schemes for Convective Modelling—There Are Much Better Alternatives , 1995 .

[39]  Ritesh Kumar,et al.  A high resolution total variation diminishing scheme for hyperbolic conservation law and related problems , 2006, Appl. Math. Comput..

[40]  Yih Nen Jeng,et al.  An Adaptive TVD Limiter , 1995 .

[41]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[42]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[43]  F. Pinho,et al.  A convergent and universally bounded interpolation scheme for the treatment of advection , 2003 .

[44]  Sarma L. Rani,et al.  Quantification of numerical diffusivity due to TVD schemes in the advection equation , 2014, J. Comput. Phys..

[45]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[46]  Manuel Torrilhon,et al.  Compact third-order limiter functions for finite volume methods , 2009, J. Comput. Phys..

[47]  Branislav Basara,et al.  BOUNDED CONVECTION SCHEMES FOR UNSTRUCTURED GRIDS , 2001 .

[48]  C. Oldenburg,et al.  Simulation of propagating fronts in geothermal reservoirs with the implicit Leonard total variation diminishing scheme , 2000 .

[49]  Jingming Hou,et al.  Improved total variation diminishing schemes for advection simulation on arbitrary grids , 2012 .

[50]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[51]  Fue-Sang Lien,et al.  Upstream monotonic interpolation for scalar transport with application to complex turbulent flows , 1994 .