Ramanujan's theory of theta-functions
暂无分享,去创建一个
[1] Jonathan M. Borwein,et al. Explicit Ramanujan-type approximations to pi of high order , 1987 .
[2] E. Hecke. Herleitung des Euler-Produktes der Zetafunktion und einigerL-Reihen aus ihrer Funktionalgleichung , 1944 .
[3] Bruce C. Berndt,et al. Chapter 16 of Ramanujan's Second Notebook Theta Functions and Q-Series , 1985 .
[4] Li-Chien Shen. On the Logarithmic Derivative of a Theta Function and a Fundamental Identity of Ramanujan , 1993 .
[5] W. H. J. Fuchs,et al. Elements of the theory of elliptic and associated functions with applications , 1967 .
[6] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[7] R. Rankin. Modular Forms and Functions , 1977 .
[8] B. Gordon. SOME IDENTITIES IN COMBINATORIAL ANALYSIS , 1961 .
[9] George E. Andrews,et al. Euler's Pentagonal Number Theorem , 1983 .
[10] Ravi P. Agarwal. Generalized hypergeometric series , 1963 .
[11] A. Atkin. Proof of a conjecture of Ramanujan , 1967, Glasgow Mathematical Journal.
[12] Theta function identities , 1990 .
[13] Frank G. Garvan,et al. Cubic Analogues of the Jacobian Theta Function θ(z, q) , 1993, Canadian Journal of Mathematics.
[14] Jonathan M. Borwein,et al. A cubic counterpart of Jacobi’s identity and the AGM , 1991 .
[15] Bruce C. Berndt,et al. On a certain theta-function in a letter of Ramanujan from Fitzroy House , 1992 .
[16] Bruce C. Berndt,et al. Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, p, and the Ladies Diary , 1988 .
[17] G. L.. Collected Papers , 1912, Nature.
[18] B. Berndt,et al. A New Class of Theta-Function Identities Originating in Ramanujan′s Notebooks , 1994 .
[19] Jonathan M. Borwein,et al. Class number three Ramanujan type series for 1/p , 1993 .
[20] L. W. Kolitsch. A Congruence for Generalized Frobenius Partitions with 3 Colors Modulo Powers of 3 , 1990 .
[21] E. Mapother,et al. Collected papers, vol. I , 1925 .
[22] M. Jackson,et al. On Lerch's Transcendant and the Basic Bilateral Hypergeometric Series 2ψ2 , 1950 .
[23] George E. Andrews,et al. Bailey chains and generalized lambert series: I. Four identities of Ramanujan , 1992 .
[24] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[25] B. Berndt. Ramanujan's Notebooks , 1985 .
[26] George E. Andrews,et al. The lost notebook and other unpublished papers , 1988 .
[27] Marvin I. Knopp,et al. Modular Functions In Analytic Number Theory , 1970 .
[28] Bruno Schoeneberg,et al. Elliptic Modular Functions , 1974 .
[29] G. Watson. Ramanujans Vermutung über Zerfällungszahlen. , 1938 .
[30] The theta functions of sublattices of the Leech lattice II , 1986 .
[31] H. Kloosterman. Simultane Darstellung zweier ganzen Zahlen als einer Summe von ganzen Zahlen und deren Quadratsumme , 1941 .
[32] N. J. Fine,et al. Basic Hypergeometric Series and Applications , 1988 .
[33] Jonathan M. Borwein,et al. Some cubic modular identities of Ramanujan , 1994 .
[34] H. Stark. On the Minimal Level of Modular Forms , 1990 .
[35] A. Legendre. Traite des fonctions elliptiques , 1825 .
[36] Bruce C. Berndt,et al. Ramanujan’s Theories of Elliptic Functions to Alternative Bases , 1995 .
[37] C. Guetzlaff. Aequatio modularis pro transformatione functionum ellipticarum septimi ordinis. , 1834 .
[38] Bruce C. Berndt,et al. Ramanujan's identities for eta-functions , 1992 .
[39] M. Newman. Construction and Application of a Class of Modular Functions (II) , 1957 .
[40] K. G. Ramanathan. Ramanujan's modular equations , 1990 .