Ramanujan's theory of theta-functions

[1]  Jonathan M. Borwein,et al.  Explicit Ramanujan-type approximations to pi of high order , 1987 .

[2]  E. Hecke Herleitung des Euler-Produktes der Zetafunktion und einigerL-Reihen aus ihrer Funktionalgleichung , 1944 .

[3]  Bruce C. Berndt,et al.  Chapter 16 of Ramanujan's Second Notebook Theta Functions and Q-Series , 1985 .

[4]  Li-Chien Shen On the Logarithmic Derivative of a Theta Function and a Fundamental Identity of Ramanujan , 1993 .

[5]  W. H. J. Fuchs,et al.  Elements of the theory of elliptic and associated functions with applications , 1967 .

[6]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[7]  R. Rankin Modular Forms and Functions , 1977 .

[8]  B. Gordon SOME IDENTITIES IN COMBINATORIAL ANALYSIS , 1961 .

[9]  George E. Andrews,et al.  Euler's Pentagonal Number Theorem , 1983 .

[10]  Ravi P. Agarwal Generalized hypergeometric series , 1963 .

[11]  A. Atkin Proof of a conjecture of Ramanujan , 1967, Glasgow Mathematical Journal.

[12]  Theta function identities , 1990 .

[13]  Frank G. Garvan,et al.  Cubic Analogues of the Jacobian Theta Function θ(z, q) , 1993, Canadian Journal of Mathematics.

[14]  Jonathan M. Borwein,et al.  A cubic counterpart of Jacobi’s identity and the AGM , 1991 .

[15]  Bruce C. Berndt,et al.  On a certain theta-function in a letter of Ramanujan from Fitzroy House , 1992 .

[16]  Bruce C. Berndt,et al.  Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, p, and the Ladies Diary , 1988 .

[17]  G. L. Collected Papers , 1912, Nature.

[18]  B. Berndt,et al.  A New Class of Theta-Function Identities Originating in Ramanujan′s Notebooks , 1994 .

[19]  Jonathan M. Borwein,et al.  Class number three Ramanujan type series for 1/p , 1993 .

[20]  L. W. Kolitsch A Congruence for Generalized Frobenius Partitions with 3 Colors Modulo Powers of 3 , 1990 .

[21]  E. Mapother,et al.  Collected papers, vol. I , 1925 .

[22]  M. Jackson,et al.  On Lerch's Transcendant and the Basic Bilateral Hypergeometric Series 2ψ2 , 1950 .

[23]  George E. Andrews,et al.  Bailey chains and generalized lambert series: I. Four identities of Ramanujan , 1992 .

[24]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[25]  B. Berndt Ramanujan's Notebooks , 1985 .

[26]  George E. Andrews,et al.  The lost notebook and other unpublished papers , 1988 .

[27]  Marvin I. Knopp,et al.  Modular Functions In Analytic Number Theory , 1970 .

[28]  Bruno Schoeneberg,et al.  Elliptic Modular Functions , 1974 .

[29]  G. Watson Ramanujans Vermutung über Zerfällungszahlen. , 1938 .

[30]  The theta functions of sublattices of the Leech lattice II , 1986 .

[31]  H. Kloosterman Simultane Darstellung zweier ganzen Zahlen als einer Summe von ganzen Zahlen und deren Quadratsumme , 1941 .

[32]  N. J. Fine,et al.  Basic Hypergeometric Series and Applications , 1988 .

[33]  Jonathan M. Borwein,et al.  Some cubic modular identities of Ramanujan , 1994 .

[34]  H. Stark On the Minimal Level of Modular Forms , 1990 .

[35]  A. Legendre Traite des fonctions elliptiques , 1825 .

[36]  Bruce C. Berndt,et al.  Ramanujan’s Theories of Elliptic Functions to Alternative Bases , 1995 .

[37]  C. Guetzlaff Aequatio modularis pro transformatione functionum ellipticarum septimi ordinis. , 1834 .

[38]  Bruce C. Berndt,et al.  Ramanujan's identities for eta-functions , 1992 .

[39]  M. Newman Construction and Application of a Class of Modular Functions (II) , 1957 .

[40]  K. G. Ramanathan Ramanujan's modular equations , 1990 .