The Structure of the Diamond
暂无分享,去创建一个
There are two distinct methods by which the X-rays may be made to help to a determination of crystal structure. The first is based on the Laue photograph and implies the reference of each spot on the photograph to its proper reflecting plane within the crystal. It then yields information as to the positions of these planes and the relative numbers of atoms which they contain. The X-rays used are the heterogeneous rays which issue from certain bulbs, for example, from the commonly used bulb which contains a platinum anticathode. The second method is based on the fact that homogeneous X-rays of wave-length λ are reflected from a set of parallel and similar crystal planes at an angle θ (and no other angle) when the relation n λ = 2 d sin θ is fulfilled. Here d is the distance between the successive planes, θ is the glancing angle which the incident and reflected rays make with the planes, and n is a whole number which in practice so far ranges from one to five. In this method the X-rays used are those homogeneous beams which issue in considerable intensity from some X-ray bulbs, and are characteristic radiations of the metal of the anticathode. Platinum, for example, emits several such beams in addition to the heterogeneous radiation already mentioned. A bulb having a rhodium anticathode, which was constructed in order to obtain a radiation having about half the wave-length of the platinum characteristic rays, has been found to give a very strong homogeneous radiation consisting of one main beam of wave-length 0.607 x 10-8 cm.,*, and a much less intense beam of wave-length 0.533 x 10-8 cm. It gives relatively little heterogeneous radiation. Its spectrum, as given by the (100) planes of rock-salt, is shown in fig. 1. It is very convenient for the application of the second method. Bulbs having nickel, tungsten, or iridium anticathodes have not so far been found convenient; the former two because their homogeneous radiations are relatively weak, the last because it is of much the same wave-length as the heterogeneous rays which the bulb emits, while it is well to have the two sets of rays quite distinct. The platinum homogeneous rays are of lengths somewhat greater than the average wave-length of the general heterogeneous radiation; the series of homogeneous iridium rays are very like the series of platinum rays raised one octave higher. For convenience, the two methods may be called the method of the Laue photograph, or, briefly, the photographic method, and the reflection method. The former requires heterogeneous rays, the latter homogeneous. The two methods throw light upon the subject from very different points and are mutually helpful.