A System View on Iterative MIMO Detection: Dynamic Sphere Detection versus Fixed Effort List Detection

Multiple-antenna systems are a promising approach to increase the data rate of wireless communication systems. One efficient possibility is spatialmultiplexing of the transmitted symbols over several antennas. Many different MIMO detector algorithms exist for this spatialmultiplexing. The major difference between differentMIMOdetectors is the resulting communications performance and implementation complexity, respectively. Particularly closed-loop MIMO systems have attained a lot of attention in the last years. In a closed-loop system, reliability information is fed back fromthe channel decoder to the MIMO detector. In this paper, we derive a basic framework to compare different soft-input soft-output MIMO detectors in open- and closed-loop systems. Within this framework, we analyze a depth-first sphere detector and a breadth-first fixed effort detector for different application scenarios and their effects on area and energy efficiency on the whole system. We present all systemcomponents under open- and closed-loop system aspects and determine the overall implementation cost for changing an open-loop system in a closed-loop system.

[1]  Rainer Leupers,et al.  A Scalable VLSI Architecture for Soft-Input Soft-Output Single Tree-Search Sphere Decoding , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Tong Zhang,et al.  A 1.1-Gb/s 115-pJ/bit Configurable MIMO Detector Using 0.13- $\mu\hbox{m}$ CMOS Technology , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Stephan ten Brink,et al.  Achieving near-capacity on a multiple-antenna channel , 2003, IEEE Trans. Commun..

[4]  Gabriel L. Nazar,et al.  Implementation comparisons of the QR decomposition for MIMO detection , 2010, SBCCI '10.

[5]  Gerhard Fettweis,et al.  Search sequence determination for tree search based detection algorithms , 2009, 2009 IEEE Sarnoff Symposium.

[6]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[7]  K. Kammeyer,et al.  Efficient algorithm for decoding layered space-time codes , 2001 .

[8]  John S. Thompson,et al.  Fixing the Complexity of the Sphere Decoder for MIMO Detection , 2008, IEEE Transactions on Wireless Communications.

[9]  A. Burg,et al.  VLSI Implementation of the List Sphere Algorithm , 2006, 2006 NORCHIP.

[10]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[11]  Zhan Guo,et al.  Algorithm and implementation of the K-best sphere decoding for MIMO detection , 2006, IEEE Journal on Selected Areas in Communications.

[12]  T. Kailath,et al.  Iterative decoding for MIMO channels via modified sphere decoding , 2004, IEEE Transactions on Wireless Communications.

[13]  John S. Thompson,et al.  Extending a Fixed-Complexity Sphere Decoder to Obtain Likelihood Information for Turbo-MIMO Systems , 2008, IEEE Transactions on Vehicular Technology.

[14]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[15]  Reinaldo A. Valenzuela,et al.  Simplified processing for high spectral efficiency wireless communication employing multi-element arrays , 1999, IEEE J. Sel. Areas Commun..

[16]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[17]  Micaela Troglia Gamba,et al.  Look-ahead sphere decoding: algorithm and VLSI architecture , 2011, IET Commun..

[18]  Tong Zhang,et al.  Low power soft-output signal detector design for wireless MIMO communication systems , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[19]  Tzi-Dar Chiueh,et al.  A 74.8 mW Soft-Output Detector IC for 8 $\,\times\,$8 Spatial-Multiplexing MIMO Communications , 2010, IEEE Journal of Solid-State Circuits.

[20]  Helmut Bölcskei,et al.  Soft-input soft-output sphere decoding , 2008, 2008 IEEE International Symposium on Information Theory.

[21]  Andreas Peter Burg,et al.  Area- and throughput-optimized VLSI architecture of sphere decoding , 2010, 2010 18th IEEE/IFIP International Conference on VLSI and System-on-Chip.

[22]  C. Studer,et al.  A 757Mb/s 1.5 mm2 90nm CMOS soft-input soft-output MIMO detector for IEEE 802.11n , 2010, 2010 Proceedings of ESSCIRC.

[23]  Heinrich Meyr,et al.  On Complexity, Energy- and Implementation-Efficiency of Channel Decoders , 2010, IEEE Transactions on Communications.

[24]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[25]  A. Burg,et al.  VLSI implementation of MIMO detection using the sphere decoding algorithm , 2005, IEEE Journal of Solid-State Circuits.

[26]  B. Hochwald,et al.  Silicon complexity for maximum likelihood MIMO detection using spherical decoding , 2004, IEEE Journal of Solid-State Circuits.

[27]  Behrouz Farhang-Boroujeny,et al.  Implementation of a Markov Chain Monte Carlo Based Multiuser/MIMO Detector , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Helmut Bölcskei,et al.  Soft-output sphere decoding: algorithms and VLSI implementation , 2008, IEEE Journal on Selected Areas in Communications.

[29]  Wai Ho Mow,et al.  A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[30]  Christoph Studer,et al.  Iterative MIMO decoding , 2009 .

[31]  K.-D. Kammeyer,et al.  MMSE extension of V-BLAST based on sorted QR decomposition , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[32]  Hartung-Gorre Verlag,et al.  Iterative MIMO Decoding: Algorithms and VLSI Implementation Aspects , 2009 .

[33]  Ieee Microwave Theory,et al.  Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems — Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands , 2003 .