Numerical modeling of heat transfer during spark plasma sintering of titanium carbide

[1]  Mehdi Shahedi Asl,et al.  Numerical simulation of heat transfer during spark plasma sintering of zirconium diboride , 2020, Ceramics International.

[2]  Mehdi Shahedi Asl,et al.  Solid solution formation during spark plasma sintering of ZrB2–TiC–graphite composites , 2020 .

[3]  Mehdi Shahedi Asl,et al.  Heat transfer and pressure drop in a ZrB2 microchannel heat sink: A numerical approach , 2020 .

[4]  M. Vajdi,et al.  Optimization of the Splitter Blade Configuration and Geometry of a Centrifugal Pump Impeller using Design of Experiment , 2020 .

[5]  E. Akbari,et al.  The influence of different SiC amounts on the microstructure, densification, and mechanical properties of hot‐pressed Al 2 O 3 ‐SiC composites , 2020, International Journal of Applied Ceramic Technology.

[6]  Mehdi Shahedi Asl,et al.  Spark plasma sintering of TiC–SiCw ceramics , 2019, Ceramics International.

[7]  Mehdi Shahedi Asl,et al.  TiB2–SiC-based ceramics as alternative efficient micro heat exchangers , 2019, Ceramics International.

[8]  Mehdi Shahedi Asl,et al.  Heat transfer, thermal stress and failure analyses in a TiB2 gas turbine stator blade , 2019, Ceramics International.

[9]  Towhid Gholizadeh,et al.  Energy and exergy evaluation of a new bi-evaporator electricity/cooling cogeneration system fueled by biogas , 2019, Journal of Cleaner Production.

[10]  Mehdi Shahedi Asl,et al.  Numerical analyses of heat transfer and thermal stress in a ZrB2 gas turbine stator blade , 2019, Ceramics International.

[11]  Towhid Gholizadeh,et al.  A new biogas-fueled bi-evaporator electricity/cooling cogeneration system: Exergoeconomic optimization , 2019, Energy Conversion and Management.

[12]  Seyed Ali Delbari,et al.  Hybrid Ti matrix composites with TiB2 and TiC compounds , 2019, Materials Today Communications.

[13]  Mehdi Shahedi Asl,et al.  A numerical approach to the heat transfer in monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramic cutting tools , 2019, Ceramics International.

[14]  Mehdi Shahedi Asl,et al.  A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2 , 2019 .

[15]  Mehdi Shahedi Asl,et al.  Microstructural, thermal and mechanical characterization of TiB2–SiC composites doped with short carbon fibers , 2019, International Journal of Refractory Metals and Hard Materials.

[16]  Mehdi Shahedi Asl,et al.  The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool , 2019 .

[17]  Mehdi Shahedi Asl,et al.  Pressureless sintering of ZrB2 ceramics codoped with TiC and graphite , 2019, International Journal of Refractory Metals and Hard Materials.

[18]  Mehdi Shahedi Asl,et al.  Thermal diffusivity and microstructure of spark plasma sintered TiB2SiC Ti composite , 2019, Ceramics International.

[19]  G. Subhash,et al.  Influence of porosity and pellet dimensions on temperature and stress inhomogeneities during spark plasma sintering of ceramic fuel , 2019, Ceramics International.

[20]  Mehdi Shahedi Asl,et al.  Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC , 2019, Ceramics International.

[21]  F. Mohammadkhani,et al.  Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas , 2019, Energy Conversion and Management.

[22]  S. Yekani,et al.  Experimental Investigation of The Performance Response of A Spark Ignition Engine to Adding Natural Gas to Gasoline in Lean-Burn Condition , 2019 .

[23]  Mehdi Shahedi Asl,et al.  TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite , 2018, Ceramics International.

[24]  Mehdi Shahedi Asl,et al.  Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB2 nanocomposites , 2018, International Journal of Refractory Metals and Hard Materials.

[25]  Mehdi Shahedi Asl,et al.  Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide , 2018, Ceramics International.

[26]  Mehdi Shahedi Asl,et al.  Effects of nano-graphite content on the characteristics of spark plasma sintered ZrB2–SiC composites , 2018 .

[27]  Mehdi Shahedi Asl,et al.  Contribution of SiC particle size and spark plasma sintering conditions on grain growth and hardness of TiB2 composites , 2017 .

[28]  G. Hilmas,et al.  Ultra-high temperature ceramics: Materials for extreme environments , 2017 .

[29]  M. Saâdaoui,et al.  Finite element modeling of spark plasma sintering: Application to the reduction of temperature inhomogeneities, case of alumina , 2017 .

[30]  Mehdi Shahedi Asl,et al.  Effect of different additives and open porosity on fracture toughness of ZrB2–SiC-based composites prepared by SPS , 2017 .

[31]  Guo‐Jun Zhang,et al.  Pressureless sintering of titanium carbide doped with boron or boron carbide , 2017 .

[32]  C. Estournès,et al.  Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process , 2016 .

[33]  Mehdi Shahedi Asl,et al.  Characteristics of multi-walled carbon nanotube toughened ZrB2–SiC ceramic composite prepared by hot pressing , 2016 .

[34]  Mehdi Shahedi Asl,et al.  Temperature dependence of microstructure evolution during hot pressing of ZrB2–30 vol.% SiC composites , 2016 .

[35]  Christopher D. Haines,et al.  Experimental Investigation of Electric Contact Resistance in Spark Plasma Sintering Tooling Setup , 2015 .

[36]  C. Estournès,et al.  Pulse analysis and electric contact measurements in spark plasma sintering , 2015 .

[37]  E. Olevsky,et al.  Experimental investigations on the synthesis of W–Cu nanocomposite through spark plasma sintering , 2015 .

[38]  Mehdi Shahedi Asl,et al.  Reactive hot pressing of ZrB2-based composites with changes in ZrO2/SiC ratio and sintering conditions. Part I: Densification behavior , 2015 .

[39]  Mehdi Shahedi Asl,et al.  Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite , 2015 .

[40]  Mehdi Shahedi Asl,et al.  Influence of graphite nano-flakes on densification and mechanical properties of hot-pressed ZrB2–SiC composite , 2015 .

[41]  Mehdi Shahedi Asl,et al.  Characterization of hot-pressed graphene reinforced ZrB 2 –SiC composite , 2015 .

[42]  C. Marsh,et al.  Numerical investigation of FAST powder consolidation of Al2O3 and additive free β-SiC , 2015 .

[43]  Mehdi Shahedi Asl,et al.  Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure , 2015 .

[44]  Mehdi Shahedi Asl,et al.  Fractographical assessment of densification mechanisms in hot pressed ZrB2-SiC composites , 2014 .

[45]  F. S. Moghanlou,et al.  Experimental study on electrohydrodynamically induced heat transfer enhancement in a minichannel , 2014 .

[46]  C. Estournès,et al.  Electro-thermal measurements and finite element method simulations of a spark plasma sintering device , 2013 .

[47]  William E Lee,et al.  Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering , 2013 .

[48]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability , 2012 .

[49]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: I. Experimental Analysis of Scalability , 2012 .

[50]  Lai-fei Cheng,et al.  FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation , 2010 .

[51]  J. Galy,et al.  Temperature Control in Spark Plasma Sintering: An FEM Approach , 2010 .

[52]  M. Herrmann,et al.  Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST) , 2009 .

[53]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[54]  Bikramjit Basu,et al.  Simulation of thermal and electric field evolution during spark plasma sintering , 2009 .

[55]  S. Urvoy,et al.  Microstructure and thermal conductivity of Mo-TiC cermets processed by hot isostatic pressing , 2008 .

[56]  Ke Yang,et al.  Ablation behaviors of ultra-high temperature ceramic composites , 2007 .

[57]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[58]  Z. A. Munir,et al.  The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method , 2006 .

[59]  D. Sciti,et al.  Fast Densification of Ultra‐High‐Temperature Ceramics by Spark Plasma Sintering , 2006 .

[60]  K. Vanmeensel,et al.  Modelling of the temperature distribution during field assisted sintering , 2005 .

[61]  Zuhair A. Munir,et al.  Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions , 2005 .

[62]  Sylvia M. Johnson,et al.  Ultra High Temperature Ceramic Composites , 2005 .

[63]  L. G. Yu,et al.  Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS) , 2003 .

[64]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[65]  N. Durlu Titanium carbide based composites for high temperature applications , 1999 .

[66]  W. Williams The thermal conductivity of metallic ceramics , 1998 .

[67]  A. Sprecher,et al.  Erratum to: Electroplasticity—The Effect of Electricity on the Mechanical Properties of Metals , 1990 .