A local Fourier convergence analysis of a multigrid method using symbolic computation

Cylindrical algebraic decomposition (CAD) is a standard tool in symbolic computation. In this paper we use it to compute a bound for the convergence rate for a numerical method that usually is merely resolved by numerical interpolation. Applying CAD allows us to determine an exact bound, but the given formula is too large to be simply plugged in. Hence a combination of reformulating, guess and prove and splitting into subproblems is necessary. In this paper we work out the details of a symbolic local Fourier analysis for a particular multigrid solver applied to a particular optimization problem constrained to a partial differential equation (PDE-constrained optimization problem), even though the proposed approach is applicable to different kinds of problems and different kinds of solvers. The approach is based on local Fourier analysis (or local mode analysis), a widely-used straight-forward method to analyze the convergence of numerical methods for solving discretized systems of partial differential equations (PDEs). Such an analysis requires to determine the supremum of some rational function, for which we apply CAD.

[1]  Stefan Vandewalle,et al.  Local Fourier Analysis of Multigrid for the Curl-Curl Equation , 2008, SIAM J. Sci. Comput..

[2]  Andreas Seidl,et al.  A generic projection operator for partial cylindrical algebraic decomposition , 2003, ISSAC '03.

[3]  Do Y. Kwak,et al.  Accuracy and Convergence Properties of the Finite Difference Multigrid Solution of an Optimal Control Optimality System , 2002, SIAM J. Control. Optim..

[4]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[5]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[6]  T. Cluzeau,et al.  Symbolic methods for developing new domain decomposition algorithms , 2012 .

[7]  Justin W. L. Wan,et al.  Practical Fourier analysis for multigrid methods , 2007, Math. Comput..

[8]  Joachim Schöberl,et al.  A Robust Multigrid Method for Elliptic Optimal Control Problems , 2011, SIAM J. Numer. Anal..

[9]  Joachim Schöberl,et al.  Sparsity Optimized High Order Finite Element Functions on Simplices , 2012 .

[10]  Manuel Kauers HOW TO USE CYLINDRICAL ALGEBRAIC DECOMPOSITION , 2011 .

[11]  Josef Schicho,et al.  Symbolic Methods for the Element Preconditioning Technique , 2001, SNSC.

[12]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[13]  Irad Yavneh,et al.  Accuracy Measures and Fourier Analysis for the Full Multigrid Algorithm , 2010, SIAM J. Sci. Comput..

[14]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[15]  T. Cluzeau,et al.  Symbolic preconditioning techniques for linear systems of partial differential equations , 2012 .

[16]  Clemens G. Raab Using Gröbner bases for finding the logarithmic part of the integral of transcendental functions , 2012, J. Symb. Comput..

[17]  Stefan Takacs,et al.  Convergence analysis of multigrid methods with collective point smoothers for optimal control problems , 2011, Comput. Vis. Sci..

[18]  M. Kollmann,et al.  A Robust Preconditioner for Distributed Optimal Control for Stokes Flow with Control Constraints , 2013 .

[19]  Hoon Hong,et al.  Testing Stability by Quantifier Elimination , 1997, J. Symb. Comput..

[20]  A. Brandt Rigorous quantitative analysis of multigrid, I: constant coefficients two-level cycle with L 2 -norm , 1994 .

[21]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[22]  Ulrich Langer,et al.  A Robust Preconditioned MinRes Solver for Time-periodic Eddy Current Problems , 2013, Comput. Methods Appl. Math..

[23]  Stefan Takacs,et al.  Smoothing Analysis of an All-at-Once Multigrid Approach for Optimal Control Problems Using Symbolic Computation , 2012 .

[24]  Stefan Vandewalle,et al.  Fourier mode analysis of multigrid methods for partial differential equations with random coefficients , 2007, J. Comput. Phys..

[25]  Adam W. Strzebonski,et al.  Solving Systems of Strict Polynomial Inequalities , 2000, J. Symb. Comput..

[26]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[27]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[28]  Oliver Lass,et al.  Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems , 2009, Computing.

[29]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[30]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[31]  Philippe Biane,et al.  Doubly-refined enumeration of Alternating Sign Matrices and determinants of 2-staircase Schur functions , 2011, 1101.3427.

[32]  Jose L. Gracia,et al.  Fourier Analysis for Multigrid Methods on Triangular Grids , 2009, SIAM J. Sci. Comput..