A highly divergent Puumala virus lineage in southern Poland

[1]  R. Ulrich,et al.  Puumala Virus in Bank Voles, Lithuania , 2017, Emerging infectious diseases.

[2]  U. Rosenfeld,et al.  Host-Associated Absence of Human Puumala Virus Infections in Northern and Eastern Germany , 2017, Emerging infectious diseases.

[3]  P. Marianneau,et al.  High genetic structuring of Tula hantavirus , 2016, Archives of Virology.

[4]  J. Eccard,et al.  Beech Fructification and Bank Vole Population Dynamics - Combined Analyses of Promoters of Human Puumala Virus Infections in Germany , 2015, PloS one.

[5]  R. Ulrich,et al.  Spatiotemporal dynamics of Puumala hantavirus associated with its rodent host, Myodes glareolus , 2015, Evolutionary applications.

[6]  M. Groschup,et al.  Complete genome of a Puumala virus strain from Central Europe , 2015, Virus Genes.

[7]  P. Liberski,et al.  Co-circulation of soricid- and talpid-borne hantaviruses in Poland. , 2014, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[8]  A. Bielawska-Drózd,et al.  Surveillance of hantaviruses in Poland: a study of animal reservoirs and human hantavirus disease in Subcarpathia. , 2014, Vector borne and zoonotic diseases.

[9]  M. Groschup,et al.  First Molecular Evidence for Puumala Hantavirus in Poland , 2014, Viruses.

[10]  D. Krüger,et al.  Hantavirus Emergence in Rodents, Insectivores and Bats: What Comes Next? , 2014 .

[11]  M. Jarosz,et al.  New cases of suspected HFRS (Hantavirus infection) in south-eastern Poland. , 2013, Annals of agricultural and environmental medicine : AAEM.

[12]  A. Vaheri,et al.  Uncovering the mysteries of hantavirus infections , 2013, Nature Reviews Microbiology.

[13]  P. Liberski,et al.  Boginia virus, a newfound hantavirus harbored by the Eurasian water shrew (Neomys fodiens) in Poland , 2013, Virology Journal.

[14]  K. Stark,et al.  Puumala Virus Outbreak in Western Thuringia, Germany, 2010: Epidemiology and Strain Identification , 2013, Zoonoses and public health.

[15]  J. Hofmann,et al.  Multiple Synchronous Outbreaks of Puumala Virus, Germany, 2010 , 2012, Emerging infectious diseases.

[16]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[17]  A. Plyusnin,et al.  Co‐circulation of two Puumala hantavirus lineages in Latvia: A russian lineage described previously and a novel Latvian lineage , 2012, Journal of medical virology.

[18]  M. Groschup,et al.  Molecular Identification of Small Mammal Species Using Novel Cytochrome b Gene-Derived Degenerated Primers , 2012, Biochemical Genetics.

[19]  N. Tordo,et al.  A five-year perspective on the situation of haemorrhagic fever with renal syndrome and status of the hantavirus reservoirs in Europe, 2005-2010. , 2011, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[20]  G. Schönrich,et al.  Human pathogenic hantaviruses and prevention of infection , 2011, Human vaccines.

[21]  A. Zvirbliene,et al.  Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein , 2011, Virus Genes.

[22]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[23]  J. Searle,et al.  Phylogeographic signatures of northward post‐glacial colonization from high‐latitude refugia: a case study of bank voles using museum specimens , 2010 .

[24]  P. Koteja,et al.  The association between body mass, metabolic rates and survival of bank voles , 2009 .

[25]  J. Knap,et al.  The first established focus of hantavirus infection in Poland, 2007. , 2009, Annals of agricultural and environmental medicine : AAEM.

[26]  M. Raftery,et al.  Hantavirus‐induced immunity in rodent reservoirs and humans , 2008, Immunological reviews.

[27]  A. Plyusnin,et al.  Accumulation of point mutations and reassortment of genomic RNA segments are involved in the microevolution of Puumala hantavirus in a bank vole (Myodes glareolus) population. , 2008, The Journal of general virology.

[28]  F. Weber,et al.  Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon‐beta promoter , 2007 .

[29]  V. Deffontaine,et al.  A northern glacial refugium for bank voles (Clethrionomys glareolus) , 2006, Proceedings of the National Academy of Sciences.

[30]  F. Conraths,et al.  A new Puumala hantavirus subtype in rodents associated with an outbreak of Nephropathia epidemica in South-East Germany in 2004 , 2006, Epidemiology and Infection.

[31]  D. Krüger,et al.  Hantavirus in African Wood Mouse, Guinea , 2006, Emerging infectious diseases.

[32]  C. Nieberding,et al.  Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus) , 2005, Molecular ecology.

[33]  P. Liberski,et al.  Characterization of Tula Virus from Common Voles (Microtus Arvalis) in Poland: Evidence for Geographic-Specific Phylogenetic Clustering , 2004, Virus Genes.

[34]  A. Plyusnin,et al.  Virus evolution and genetic diversity of hantaviruses and their rodent hosts. , 2001, Current topics in microbiology and immunology.

[35]  H. Artsob,et al.  Genetic diversity and distribution of Peromyscus-borne hantaviruses in North America. , 1999, Emerging infectious diseases.

[36]  T. Ksiazek,et al.  Genetic Analysis of the Diversity and Origin of Hantaviruses in Peromyscus leucopus Mice in North America , 1998, Journal of Virology.