Volume-preserving integrators have linear error growth
暂无分享,去创建一个
[1] Uriel Frisch,et al. Chaotic streamlines in the ABC flows , 1986, Journal of Fluid Mechanics.
[2] G. R. W. Quispel,et al. Numerical Integrators that Preserve Symmetries and Reversing Symmetries , 1998 .
[3] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[4] D. Stoffer. On the qualitative behaviour of symplectic integrators. Part II. Integrable systems , 1998 .
[5] R. McLachlan,et al. The accuracy of symplectic integrators , 1992 .
[6] M. Hénon,et al. The applicability of the third integral of motion: Some numerical experiments , 1964 .
[7] L. Fauci,et al. A computational model of aquatic animal locomotion , 1988 .
[8] O. Gonzalez. Time integration and discrete Hamiltonian systems , 1996 .
[9] A. Dragt,et al. Normal form for mirror machine Hamiltonians , 1979 .
[10] J. Marsden,et al. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .
[11] Mari Paz Calvo,et al. The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..
[12] Generating functions for dynamical systems with symmetries, integrals, and differential invariants , 1998 .
[13] E. Hairer,et al. Accurate long-term integration of dynamical systems , 1995 .
[14] A. Neishtadt. The separation of motions in systems with rapidly rotating phase , 1984 .
[15] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[16] J. Marsden,et al. Mechanical integrators derived from a discrete variational principle , 1997 .
[17] B. Cano,et al. Error Growth in the Numerical Integration of Periodic Orbits, with Application to Hamiltonian and Reversible Systems , 1997 .
[18] B. Cano,et al. Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems , 1998 .
[19] Feng Kang,et al. Volume-preserving algorithms for source-free dynamical systems , 1995 .
[20] Antonella Zanna,et al. Collocation and Relaxed Collocation for the Fer and the Magnus Expansions , 1999 .
[21] A. R. Humphries,et al. Dynamical Systems And Numerical Analysis , 1996 .
[22] G. Quispel,et al. Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[23] G.R.W. Wuispel,et al. Volume-preserving integrators , 1995 .
[24] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[25] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[26] J. Butcher. The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .
[27] G. S. Turner,et al. Discrete gradient methods for solving ODEs numerically while preserving a first integral , 1996 .
[28] Donald Estep,et al. The rate of error growth in Hamiltonian-conserving integrators , 1995 .