Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems

In order to solve large sparse linear complementarity problems on parallel multiprocessor systems, we construct modulus-based synchronous two-stage multisplitting iteration methods based on two-stage multisplittings of the system matrices. These iteration methods include the multisplitting relaxation methods such as Jacobi, Gauss–Seidel, SOR and AOR of the modulus type as special cases. We establish the convergence theory of these modulus-based synchronous two-stage multisplitting iteration methods and their relaxed variants when the system matrix is an H + -matrix. Numerical results show that in terms of computing time the modulus-based synchronous two-stage multisplitting relaxation methods are more efficient than the modulus-based synchronous multisplitting relaxation methods in actual implementations.

[1]  Zhong-Zhi Bai,et al.  Modulus‐based matrix splitting iteration methods for linear complementarity problems , 2010, Numer. Linear Algebra Appl..

[2]  L. Cvetković,et al.  Minimal sets alternative to minimal Geršgorin sets , 2010 .

[3]  Ljiljana Cvetković Some convergence conditions for a class of parallel decomposition-type linear relaxation methods , 2002 .

[4]  Apostolos Hadjidimos,et al.  Nonstationary Extrapolated Modulus Algorithms for the solution of the Linear Complementarity Problem , 2009 .

[5]  Zhong-Zhi Bai,et al.  On the Convergence of the Multisplitting Methods for the Linear Complementarity Problem , 1999, SIAM J. Matrix Anal. Appl..

[6]  Li-Li Zhang,et al.  Modulus‐based synchronous multisplitting iteration methods for linear complementarity problems , 2013, Numer. Linear Algebra Appl..

[7]  Apostolos Hadjidimos,et al.  The principle of extrapolation and the Cayley Transform , 2008 .

[8]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[9]  David J. Evans,et al.  Matrix Multisplitting Methods with Applications to Linear Complementarity Problems∶ Parallel Asynchronous Methods , 2002, Int. J. Comput. Math..

[10]  A. Frommer,et al.  Convergence of relaxed parallel multisplitting methods , 1989 .

[11]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[12]  D. Szyld,et al.  H-Splittings and two-stage iterative methods , 1992 .

[13]  David J. Evans,et al.  Matrix multisplitting relaxation methods for linear complementarity problems , 1997, Int. J. Comput. Math..

[14]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[15]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[16]  Zhong-Zhi Bai,et al.  A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations , 1996 .

[17]  Mei-Qun Jiang,et al.  A modified modulus method for symmetric positive‐definite linear complementarity problems , 2009, Numer. Linear Algebra Appl..

[18]  D. O’Leary,et al.  Multi-Splittings of Matrices and Parallel Solution of Linear Systems , 1985 .

[19]  Vladimir Kostic,et al.  New subclasses of block H-matrices with applications to parallel decomposition-type relaxation methods , 2006, Numerical Algorithms.

[20]  Domine M. W. Leenaerts,et al.  Piecewise Linear Modeling and Analysis , 1998 .

[21]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[22]  Mark T. Jones,et al.  Two-Stage and Multisplitting Methods for the Parallel Solution of Linear Systems , 1992, SIAM J. Matrix Anal. Appl..