Contributed Review: A review of compact interferometers.

Compact interferometers, called phasemeters, make it possible to operate over a large range while ensuring a high resolution. Such performance is required for the stabilization of large instruments dedicated to experimental physics such as gravitational wave detectors. This paper aims at presenting the working principle of the different types of phasemeters developed in the literature. These devices can be classified into two categories: homodyne and heterodyne interferometers. Improvement of resolution and accuracy has been studied for both devices. Resolution is related to the noise sources that are added to the signal. Accuracy corresponds to distortion of the phase measured with respect to the real phase, called non-linearity. The solutions proposed to improve the device resolution and accuracy are discussed based on a comparison of the reached resolutions and of the residual non-linearities.

[2]  D. Royer,et al.  Optical Detection of Sub-Angstrom Transient Mechanical Displacements , 1986, IEEE 1986 Ultrasonics Symposium.

[3]  Alan E. Rosenbluth,et al.  Optical sources of non-linearity in heterodyne interferometers , 1990 .

[4]  D. Hoyland,et al.  A compact, large-range interferometer for precision measurement and inertial sensing , 2017, 1710.05943.

[5]  Jean-Pierre Monchalin,et al.  Heterodyne interferometric laser probe to measure continuous ultrasonic displacements , 1985 .

[6]  Giuseppe Molesini,et al.  Accurate polarization interferometer , 1995 .

[7]  D. Blair,et al.  Investigation of a laser walk-off angle sensor and its application to tilt measurement in gravitational wave detectors , 2001 .

[8]  Eberhard Manske,et al.  Heterodyne interferometer laser source with a pair of two phase locked loop coupled He–Ne lasers by 632.8 nm , 2012 .

[9]  Min-Kang Zhou,et al.  Note: A three-dimension active vibration isolator for precision atom gravimeters. , 2015, The Review of scientific instruments.

[10]  R. F. Humphryes,et al.  Acoustic-surface-wave amplitude and phase measurements using laser probes , 1972 .

[11]  Jan Herrmann,et al.  Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters. , 2010, Optics letters.

[12]  Yan Li,et al.  Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb. , 2013, Applied optics.

[13]  Jun Luo,et al.  Performance of a cold-atom gravimeter with an active vibration isolator , 2012 .

[14]  K Creath,et al.  Window function influence on phase error in phase-shifting algorithms. , 1996, Applied optics.

[15]  N. Karnesis,et al.  Towards a FPGA-controlled deep phase modulation interferometer , 2014, 1411.6910.

[16]  Viktor Witkovský,et al.  Ellipse fitting by nonlinear constraints to demodulate quadrature homodyne interferometer signals and to determine the statistical uncertainty of the interferometric phase , 2014 .

[17]  Ulrich Johann,et al.  Successful testing of the LISA Technology Package (LTP) interferometer engineering model , 2005 .

[18]  Gwo-Sheng Peng,et al.  Correction of nonlinearity in one-frequency optical interferometry , 1996 .

[19]  Gerhard Heinzel,et al.  Experimental demonstration of deep frequency modulation interferometry. , 2016, Optics express.

[20]  David E. McClelland,et al.  Frequency stability of spatial mode interference (tilt) locking , 2002 .

[21]  N. Bobroff,et al.  Residual errors in laser interferometry from air turbulence and nonlinearity. , 1987, Applied optics.

[22]  H. Engan,et al.  Heterodyne interferometer for absolute amplitude vibration measurements with femtometer sensitivity. , 2013, Optics express.

[23]  Mark A. Zumberge,et al.  An Optical Seismometer without Force Feedback , 2010 .

[24]  Zhimin Chen,et al.  Vibration-displacement measurements with a highly stabilised optical fiber Michelson interferometer system , 2010 .

[25]  A. Freise,et al.  Interferometer techniques for gravitational-wave detection , 2017, Living reviews in relativity.

[26]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[27]  Janez Mozina,et al.  Quadrature phase-shift error analysis using a homodyne laser interferometer. , 2009, Optics express.

[28]  Haoyun Wei,et al.  Green laser interferometric metrology system with sub-nanometer periodic nonlinearity. , 2016, Applied optics.

[29]  Martin Gohlke,et al.  Picometre and nanoradian heterodyne interferometry and its application in dilatometry and surface metrology , 2012 .

[30]  Ulrich Johann,et al.  The LTP interferometer and phasemeter , 2004 .

[31]  Wenmei Hou,et al.  Investigation and compensation of the nonlinearity of heterodyne interferometers , 1992 .

[32]  Jose D. Otero Development and characterization of an observatory-class, broadband, non-fedback, leaf-spring interferometric seismometer , 2009 .

[33]  Christopher Hakoda,et al.  Dual-arm multiple-reflection Michelson interferometer for large multiple reflections and increased sensitivity , 2016 .

[34]  Marco Pisani,et al.  Design of an interferometric displacement sensor with picometer resolution for the Galileo-Galilei mission , 2015, 2015 IEEE Metrology for Aerospace (MetroAeroSpace).

[35]  Benno Willke,et al.  Mode-cleaning and injection optics of the gravitational-wave detector GEO600 , 2003 .

[36]  Gaoliang Dai,et al.  Determining the residual nonlinearity of a high-precision heterodyne interferometer , 1999 .

[37]  Shigeo Iwasaki,et al.  Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer , 1999 .

[38]  Lionel R Watkins,et al.  Ellipse fitting for interferometry. Part 2: experimental realization. , 2014, Applied optics.

[39]  Michael Hillard,et al.  Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: Design and production overview , 2014, 1407.6377.

[40]  K. Emancipator,et al.  A quantitative measure of nonlinearity. , 1993, Clinical chemistry.

[41]  S. Rice Mathematical analysis of random noise , 1944 .

[42]  Marco Pisani,et al.  Comparison of the performance of the next generation of optical interferometers , 2012 .

[43]  Haoyun Wei,et al.  Note: Periodic error measurement in heterodyne interferometers using a subpicometer accuracy Fabry-Perot interferometer. , 2014, The Review of scientific instruments.

[44]  K. W. Raine,et al.  An Unmodulated Bi-Directional Fringe-Counting Interferometer System for Measuring Displacement , 1979 .

[45]  K. W. Raine,et al.  Beam-splitter Coatings for Producing Phase Quadrature Interferometer Outputs , 1978 .

[46]  R. Hamid,et al.  Picometre displacement measurements using a differential Fabry–Perot optical interferometer and an x-ray interferometer , 2012 .

[47]  Ondřej Číp,et al.  Problems regarding linearity of data of a laser interferometer with a single-frequency laser , 1999 .

[48]  J. Fu,et al.  Heterodyne interferometer with two spatial-separated polarization beams for nanometrology , 2002 .

[49]  John L. Hall,et al.  Frequency stabilization of a cw dye laser , 1973 .

[50]  J. Bokor,et al.  Fourier-transform method of phase-shift determination. , 2001, Applied optics.

[51]  Jonathan D. Ellis,et al.  Field guide to displacement measuring interferometry , 2014 .

[52]  Martin Gohlke,et al.  Compact Laser Interferometer for Translation and Tilt Metrology , 2007 .

[53]  Chen Wang,et al.  Real-time FPGA-based Kalman filter for constant and non-constant velocity periodic error correction , 2017 .

[54]  Lee Kumanchik,et al.  High sensitivity optomechanical reference accelerometer over 10 kHz , 2013, 1303.1188.

[55]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[56]  Marco Pisani,et al.  Multiple reflection Michelson interferometer with picometer resolution. , 2008, Optics express.

[57]  H. Engan,et al.  Wide frequency range measurements of absolute phase and amplitude of vibrations in micro- and nanostructures by optical interferometry. , 2007, Optics express.

[58]  Oliver Gerberding,et al.  Deep frequency modulation interferometry. , 2015, Optics express.

[59]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[60]  Haoyun Wei,et al.  Fabry–Perot interferometer with picometer resolution referenced to an optical frequency comb , 2015 .

[61]  W. Hou,et al.  The effect of laser source and PBS on the nonlinearity in heterodyne interferometer , 2015 .

[62]  Janez Možina,et al.  Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer , 2011 .

[63]  Mikko Merimaa,et al.  A method for linearization of a laser interferometer down to the picometre level with a capacitive sensor , 2011 .

[64]  M J Collett,et al.  Ellipse fitting for interferometry. Part 3: dynamic method. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[65]  J. McGuirk High precision absolute gravity gradiometry with atom interferometry , 2001 .

[66]  R Dändliker,et al.  Heterodyne interferometer for submicroscopic vibration measurements in the inner ear. , 1988, The Journal of the Acoustical Society of America.

[67]  Kent A. Murphy,et al.  Optical fibre based absolute extrinsic Fabry - Pérot interferometric sensing system , 1996 .

[68]  Paul L. Rosin A note on the least squares fitting of ellipses , 1993, Pattern Recognit. Lett..

[69]  Birk Andreas,et al.  A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm , 2012 .

[70]  E. Wielandt,et al.  The leaf-spring seismometer: Design and performance , 1982 .

[71]  F. E. Peña Arellano,et al.  Interferometric measurement of angular motion. , 2013, The Review of scientific instruments.

[72]  Herwig Kogelnik,et al.  Laser beams and resonators , 1966 .

[73]  Matthew A Dzieciuch,et al.  Resolving quadrature fringes in real time. , 2004, Applied optics.

[74]  István Dániel Advanced successive phase unwrapping algorithm for quadrature output Michelson interferometers , 2005 .

[75]  A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer , 1999 .

[76]  Miranda Bradshaw nEUCLID : a new homodyne interferometer with space applications , 2015 .

[77]  J. Johnson Thermal Agitation of Electricity in Conductors , 1928 .

[78]  Antti Lassila,et al.  Design and characterization of MIKES metrological atomic force microscope , 2010 .

[79]  N. Bobroff Recent advances in displacement measuring interferometry , 1993 .

[80]  Karsten Danzmann,et al.  The end-to-end testbed of the optical metrology system on-board LISA Pathfinder , 2009 .

[81]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[82]  Yan Li,et al.  Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer. , 2015, Applied optics.

[83]  M. J. Downs,et al.  A proposed design for a polarization-insensitive optical interferometer system with subnanometric capability , 1993 .

[84]  Gerald Hechenblaikner Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[85]  Kyuwon Jeong,et al.  The dynamic compensation of nonlinearity in a homodyne laser interferometer , 2001 .

[86]  A. M. Cruise,et al.  Construction and testing of the optical bench for LISA Pathfinder , 2013 .

[87]  Peter de Groot,et al.  Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window. , 1995, Applied optics.

[88]  K. Venkateswara,et al.  A high-precision mechanical absolute-rotation sensor. , 2014, The Review of scientific instruments.

[89]  P Fritschel,et al.  Frequency fluctuations of a diode-pumped Nd:YAG ring laser. , 1989, Optics letters.

[90]  Kurt Artoos,et al.  Review: Inertial sensors for low-frequency seismic vibration measurement , 2012 .

[91]  S. Aston Optical read-out techniques for the control of test-masses in gravitational wave observatories , 2016 .

[92]  P. Balling,et al.  Common path two-wavelength homodyne counting interferometer development , 2009 .

[93]  Robert E. Scholten,et al.  Frequency noise characterisation of narrow linewidth diode lasers , 2002 .

[94]  K. Strain,et al.  Damping and local control of mirror suspensions for laser interferometric gravitational wave detectors. , 2012, The Review of scientific instruments.

[95]  G. Tee,et al.  Ellipse fitting for interferometry. Part 1: static methods. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[96]  Ulrich Johann,et al.  Interferometry for the LISA technology package (LTP) aboard SMART-2 , 2003 .

[97]  Martin Gohlke,et al.  Picometer and nanoradian optical heterodyne interferometry for translation and tilt metrology of the LISA gravitational reference sensor , 2009 .

[98]  P L Heydemann,et al.  Determination and correction of quadrature fringe measurement errors in interferometers. , 1981, Applied optics.

[99]  M. Kasevich,et al.  Sensitive absolute-gravity gradiometry using atom interferometry , 2001, physics/0105088.

[100]  M. Tanaka,et al.  Linear interpolation of periodic error in a heterodyne laser interferometer at subnanometer levels (dimension measurement) , 1989 .