Refined cut-off for TP53 immunohistochemistry improves prediction of TP53 mutation status in ovarian mucinous tumors: implications for outcome analyses

Kylie L. Gorringe | S. Fox | P. Fasching | E. Goode | K. Byth | S. Lade | N. Traficante | S. Fereday | J. Hung | Y. Chiew | I. Haviv | A. deFazio | D. Bowtell | M. Christie | N. Le | C. Le Page | A. Mes-Masson | D. Huntsman | P. Pharoah | M. Köbel | D. Provencher | J. Brenton | C. Gilks | M. Anglesio | J. McAlpine | L. Galletta | G. Chenevix-Trench | N. Pavlakis | M. Goodman | N. Hacker | C. Scott | G. Samimi | T. Healy | N. Zeps | M. Churchman | D. Whiteman | L. Kelemen | M. Wakefield | I. Campbell | D. Purdie | J. Doherty | S. Kaufmann | L. Mileshkin | M. Friedlander | A. Proietto | C. Hall | D. Rischin | Y. Antill | K. Nattress | C. Gourley | R. Stuart-Harris | M. Oehler | M. Böhm | W. Sieh | K. Alsop | C. Dalrymple | J. Pyman | A. Obermair | L. Cook | K. Ferguson | S. Ramus | L. Jackman | K. Gorringe | S. Hunter | G. Ryland | N. Pandeya | W. Murray | K. Kalli | K. Sundfeldt | K. Phillips | Simone M. Rowley | G. Au-Yeung | P. Harnett | J. Hendley | Cecile LePage | D. Giles | D. Bowtell | K. Harrap | A. Stephens | S. Deen | R. Bell | L. Bowes | P. Allan | K. Rahimi | N. S. Meagher | P. Beale | P. Mamers | A. Brand | M. Davy | S. Ananda | G. Ho | I. Simpson | T. Jobling | S. Braye | S. Begbie | D. Allen | T. Bonaventura | B. Brown | P. Grant | Carolina Salazar | D. Cheasley | M. Jones | A. Ferrier | D. Nevell | S. Valmadre | L. Edwards | C. Underhill | R. Sharma | R. Robertson | S. Moore | Nicole Fairweather | A. Crandon | G. Robertson | D. Wyld | V. Jayde | V. Billson | P. Blomfield | N. O’Callaghan | S. Bilic | Clare L. Scott | A. Glasgow | T. Manolitsas | D. Neesham | A. McCartney | R. Houghton | K. Horwood | B. Susil | S. Baron-Hay | C. Camaris | P. Russell | E. Sumithran | N. Hacker | M. Quinn | M. Links | R. Laurie | L. Green | D. Bowtell | S. Hyde | A. Green | T. Dodd | P. Clingan | E. Kang | D. Challis | Rhiannon Dudley | A. Hadley | Ragwha Sharma | Zhongyue Xing | Julia Brooks | J. Miller | P. Waring | A. Martyn | D. Papadimos | C. Mateoiu | I. Hammond | P. Mackenzie | F. Kirsten | S. Fox | B. Ranieri | G. Otton | M. Malt | R. McIntosh | G. Wain | J. Nicklin | O. McNally | G. Gard | A. Stenlake | A. Parker | V. Ganju | R. Sharma | B. Young | D. Healy | Y. Leung | M. Loughrey | J. Beith | K. Pittman | D. Gertig | J. Carter | Catherine J Kennedy | P. Webb | G. Chenevix-Trench | Michelle da Cunha Torres | D. G. A. P. A. D. N. S. S. J. K. T. N. M. A. R. T. Va Bowtell Chenevix-Trench Green Webb DeFazio Ger | D. G. A. P. A. D. Bowtell Chenevix-Trench Green Webb DeFazio Gertig | N. S. S. J. K. T. N. Traficante Fereday Moore Hung Harrap Sadkowsky Pan | T. Sadkowsky | M. A. R. T. Vanden M. P. J. K. Y. E. A. H. B. P. S. T Malt Mellon Robertson Bergh Jones Mackenzie Ma | A. Mellon | T. V. Bergh | J. Maidens | H. Sullivan | B. Alexander | P. Ashover | S. Brown | T. Corrish | K. Martin | J. White | J. Hendley | T. Schmidt | H. Shirley | C. Ball | C. Young | S. Viduka | H. Tran | L. Glavinas | R. F. J. P. A. A. S. G. J. T. J. S. M. D. S. A. G. D. Stuart-Harris Kirsten Rutovitz Clingan Glasgow | J. Rutovitz | J. Shannon | J. Stewart | D. Bell | R. Crouch | N. Hacker | D. Marsden | J. Grygiel | J. Hill | R. Jaworski | B. Ward | M. Cummings | L. Perrin | D. Henderson | J. Pierdes | R. Rome | M. Robbie | J. McNealage | P. Rogers | D. Johnson | L. Ng | R. Blum | M. Buck | Michael Churchman | Dane Matthew J. Georgina L. Prue E. Kathryn Sumitra Mic Cheasley Wakefield Ryland Allan Alsop Ananda | Neville F. Hacker | Joy Hendley | Jan Pyman | R. Sharma | J. Miller | Z. Xing | Catherine J. Kennedy | M. Böhm | A. Brand | S. Fox | Ian Campbell | Clare L Scott | N. Hacker | Scott H. Kaufmann

[1]  D. Huntsman,et al.  Major p53 immunohistochemical patterns in in situ and invasive squamous cell carcinomas of the vulva and correlation with TP53 mutation status , 2020, Modern Pathology.

[2]  M. Köbel,et al.  p53 immunohistochemistry is an accurate surrogate for TP53 mutational analysis in endometrial carcinoma biopsies , 2019, The Journal of pathology.

[3]  D. Lane,et al.  Intratumour heterogeneity of p53 expression; causes and consequences , 2019, The Journal of pathology.

[4]  Kylie L. Gorringe,et al.  The molecular origin and taxonomy of mucinous ovarian carcinoma , 2019, Nature Communications.

[5]  Kylie L. Gorringe,et al.  A combination of the immunohistochemical markers CK7 and SATB2 is highly sensitive and specific for distinguishing primary ovarian mucinous tumors from colorectal and appendiceal metastases , 2019, Modern Pathology.

[6]  M. Köbel,et al.  Interpretation of P53 Immunohistochemistry in Endometrial Carcinomas: Toward Increased Reproducibility , 2018, International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists.

[7]  N. Rosenfeld,et al.  Optimized p53 immunohistochemistry is an accurate predictor of TP53 mutation in ovarian carcinoma , 2016, The journal of pathology. Clinical research.

[8]  N. Le,et al.  Adult lifetime alcohol consumption and invasive epithelial ovarian cancer risk in a population-based case-control study. , 2016, Gynecologic oncology.

[9]  Kylie L. Gorringe,et al.  Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors , 2015, Genome Medicine.

[10]  Kylie L. Gorringe,et al.  Mutational landscape of mucinous ovarian carcinoma and its neoplastic precursors , 2015, Genome Medicine.

[11]  Jesse S. Voss,et al.  Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms , 2015, BMC Cancer.

[12]  I. Nagtegaal,et al.  A patient with a noninvasive mucinous ovarian borderline tumor presenting with late pleural metastases. , 2015, International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists.

[13]  J. George,et al.  Genomic Classification of Serous Ovarian Cancer with Adjacent Borderline Differentiates RAS Pathway and TP53-Mutant Tumors and Identifies NRAS as an Oncogenic Driver , 2014, Clinical Cancer Research.

[14]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[15]  M. Lux,et al.  Hormone replacement therapy and prognosis in ovarian cancer patients , 2013, European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation.

[16]  J. Doherty,et al.  Sun exposure and risk of epithelial ovarian cancer , 2012, Cancer Causes & Control.

[17]  Kylie L. Gorringe,et al.  Pre-Invasive Ovarian Mucinous Tumors Are Characterized by CDKN2A and RAS Pathway Aberrations , 2012, Clinical Cancer Research.

[18]  Stewart G. Martin,et al.  Co-expression of VEGF and CA9 in ovarian high-grade serous carcinoma and relationship to survival , 2012, Virchows Archiv.

[19]  M. Köbel,et al.  Mucinous carcinomas of the ovary and colorectum: different organ, same dilemma. , 2011, The Lancet. Oncology.

[20]  Sebastian M. Armasu,et al.  Assessment of Hepatocyte Growth Factor in Ovarian Cancer Mortality , 2011, Cancer Epidemiology, Biomarkers & Prevention.

[21]  A. Reuss,et al.  The biological and clinical value of p53 expression in pelvic high‐grade serous carcinomas , 2010, The Journal of pathology.

[22]  Carlos Caldas,et al.  Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary , 2010, The Journal of pathology.

[23]  M. Goodman,et al.  Association of two common single-nucleotide polymorphisms in the CYP19A1 locus and ovarian cancer risk. , 2008, Endocrine-related cancer.

[24]  L. Wilkens,et al.  Genetic Polymorphisms in the Paraoxonase 1 Gene and Risk of Ovarian Epithelial Carcinoma , 2008, Cancer Epidemiology Biomarkers & Prevention.

[25]  N. Weiss,et al.  Menopausal Hormone Therapy and Risk of Epithelial Ovarian Cancer , 2007, Cancer Epidemiology Biomarkers & Prevention.

[26]  M. Olivier,et al.  Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database , 2007, Human mutation.

[27]  J. Garber,et al.  A candidate precursor to serous carcinoma that originates in the distal fallopian tube , 2007 .

[28]  A. Whittemore,et al.  Common variants in mismatch repair genes and risk of invasive ovarian cancer. , 2006, Carcinogenesis.

[29]  A. Whittemore,et al.  Relation of contraceptive and reproductive history to ovarian cancer risk in carriers and noncarriers of BRCA1 gene mutations. , 2004, American journal of epidemiology.

[30]  R. Kurman,et al.  Borderline ovarian tumors: key points and workshop summary. , 2004, Human pathology.

[31]  R. Scully,et al.  Mucinous Tumors of the Ovary: A Clinicopathologic Study of 196 Borderline Tumors (of Intestinal Type) and Carcinomas, Including an Evaluation of 11 Cases With `Pseudomyxoma Peritonei' , 2000, The American journal of surgical pathology.

[32]  R. Scully,et al.  p53 expression in ovarian borderline tumors and stage I carcinomas. , 1994, American journal of clinical pathology.

[33]  M. Köbel,et al.  Smoking may modify the association between neoadjuvant chemotherapy and survival from ovarian cancer. , 2016, Gynecologic oncology.

[34]  D. Huntsman,et al.  Kisspeptin and GPR54 immunoreactivity in a cohort of 518 patients defines favourable prognosis and clear cell subtype in ovarian carcinoma. , 2007, BMC medicine.

[35]  Royal Women's Hospital. , 1972, The Australasian nurses journal.