Room squares with super-simple property

Constant-composition codes are a special type of constant-weight codes and have attracted recent interest due to their numerous applications. In a recent work, the authors found that an optimal (n, 5, [2, 1, 1])4-code of constant-composition can be obtained from a Room square of side n with super-simple property. In this paper, we study the existence problem of super-simple Room squares. The problem is solved leaving only two minimal possible n undetermined.

[1]  Gennian Ge,et al.  Quaternary Constant-Composition Codes With Weight 4 and Distances 5 or 6 , 2012, IEEE Transactions on Information Theory.

[2]  Cunsheng Ding,et al.  Optimal Constant Composition Codes From Zero-Difference Balanced Functions , 2008, IEEE Transactions on Information Theory.

[3]  Frederick Hoffman,et al.  Proceedings of the Fourth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic University, Boca Raton, March 5-8, 1973 , 1973 .

[4]  G. Mullen,et al.  Frequency permutation arrays , 2005, math/0511173.

[5]  Yeow Meng Chee,et al.  Improved Lower Bounds for Constant GC-Content DNA Codes , 2008, IEEE Transactions on Information Theory.

[6]  Chengmin Wang,et al.  Generalized balanced tournament designs and related codes , 2008, Des. Codes Cryptogr..

[7]  T. G. Room 2569. A new type of magic square , 1955, The Mathematical Gazette.

[8]  A. Vinck,et al.  On Constant-Composition Codes Over , 2003 .

[9]  Victor Zinoviev,et al.  Spherical codes generated by binary partitions of symmetric pointsets , 1995, IEEE Trans. Inf. Theory.

[10]  Yeow Meng Chee,et al.  Linear Size Optimal $q$-ary Constant-Weight Codes and Constant-Composition Codes , 2010, IEEE Transactions on Information Theory.

[11]  Torleiv Kløve,et al.  Permutation arrays for powerline communication and mutually orthogonal latin squares , 2004, IEEE Transactions on Information Theory.

[12]  Decision Systems.,et al.  Zero error decision feedback capacity of discrete memoryless channels , 1989 .

[13]  Cunsheng Ding,et al.  Algebraic constructions of constant composition codes , 2005, IEEE Trans. Inf. Theory.

[14]  Christopher A. Rodger,et al.  Linear spaces with many small lines , 1994, Discret. Math..

[15]  Cunsheng Ding,et al.  Combinatorial constructions of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[16]  Jie Yan,et al.  A class of optimal constant composition codes from GDRPs , 2009, Des. Codes Cryptogr..

[17]  Oliver D. King,et al.  Bounds for DNA Codes with Constant GC-Content , 2003, Electron. J. Comb..

[18]  Hao Shen,et al.  The PBD-Closure of Constant-Composition Codes , 2007, IEEE Transactions on Information Theory.

[19]  Yang Ding A Construction for Constant-Composition Codes , 2008, IEEE Transactions on Information Theory.

[20]  Navin Kashyap,et al.  On the Design of Codes for DNA Computing , 2005, WCC.

[21]  Gennian Ge,et al.  Optimal Ternary Constant-Composition Codes of Weight Four and Distance Five , 2011, IEEE Transactions on Information Theory.

[22]  Gennian Ge,et al.  Group Divisible Codes and Their Application in the Construction of Optimal Constant-Composition Codes of Weight Three , 2008, IEEE Transactions on Information Theory.

[23]  W. D. Wallis,et al.  On the existence of room squares , 1972 .

[24]  A. J. Han Vinck,et al.  On constant-composition codes over Zq , 2003, IEEE Trans. Inf. Theory.

[25]  C. Colbourn,et al.  Mutually orthogonal latin squares (MOLS) , 2006 .

[26]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[27]  M. Svanstrom Constructions of ternary constant-composition codes with weight three , 2000 .

[28]  Douglas R. Stinson,et al.  The spectrum of skew Room squares , 1981, Journal of the Australian Mathematical Society.

[29]  Cunsheng Ding,et al.  A family of optimal constant-composition codes , 2005, IEEE Transactions on Information Theory.

[30]  Gennian Ge,et al.  Existence of almost resolvable directed 5-cycle systems , 1995, Australas. J Comb..

[31]  Sophie Huczynska Equidistant frequency permutation arrays and related constant composition codes , 2010, Des. Codes Cryptogr..

[32]  Patric R. J. Östergård,et al.  Bounds and constructions for ternary constant-composition codes , 2002, IEEE Trans. Inf. Theory.

[33]  Jie Yan,et al.  Constructions of optimal GDRP(n, lambda;v)'s of type lambda1µm-1 , 2008, Discret. Appl. Math..

[34]  Charles J. Colbourn,et al.  Constructions for Permutation Codes in Powerline Communications , 2004, Des. Codes Cryptogr..

[35]  Cunsheng Ding,et al.  A Construction of Optimal Constant Composition Codes , 2006, Des. Codes Cryptogr..

[36]  Gennian Ge Group Divisible Designs , 2006 .

[37]  Charles J. Colbourn,et al.  On constant composition codes , 2006, Discret. Appl. Math..

[38]  Stoyan N. Kapralov,et al.  Enumeration of Optimal Ternary Constant-Composition Codes , 2003, Probl. Inf. Transm..

[39]  Yin Jianxing,et al.  A new combinatorial approach to the construction of constant composition codes , 2008 .

[40]  Bin Wen,et al.  Optimal grid holey packings with block size 3 and 4 , 2009, Des. Codes Cryptogr..