Electronic band structure calculations for biaxially strained Si, Ge, and III-V semiconductors

Electronic band structure and effective masses for relaxed and biaxially strained Si, Ge, III–V compound semiconductors (GaAs, GaSb, InAs, InSb, InP) and their alloys (InxGa1−xAs, InxGa1−xSb) on different interface orientations, (001), (110), and (111), are calculated using nonlocal empirical pseudopotential with spin-orbit interaction. Local and nonlocal pseudopotential parameters are obtained by fitting transport-relevant quantities, such as band gap and deformation potentials, to available experimental data. A cubic-spline interpolation is used to extend local form factors to arbitrary q and to obtain correct workfunctions. The nonlocal and spin-orbit terms are linearly interpolated between anions and cations for III–V semiconductors. The virtual crystal approximation is employed for the InxGa1−xAs and InxGa1−xSb alloys and deformation potentials are determined using linear deformation-potential theory. Band gap bowing parameters are extracted using least-square fitting for relaxed alloys and for strai...

[1]  J. Welser,et al.  Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors , 1994, IEEE Electron Device Letters.

[2]  C. Kim,et al.  Band structure of ternary compound semiconductors beyond the virtual crystal approximation , 1990 .

[3]  O. Madelung,et al.  Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology - New Series , 1965 .

[4]  Manuel Cardona,et al.  Temperature dependence of the direct gap of Si and Ge , 1983 .

[5]  Chu,et al.  Type-I to type-II superlattice transition in strained layers of InxGa , 1988, Physical review letters.

[6]  S. Bednarek,et al.  Calculation of the Γ-∆ Electron-Phonon and Hole-Phonon Matrix Elements in Silicon , 1982 .

[7]  G. B. Stringfellow,et al.  Strain effects on GaxIn1−xAs/InP single quantum wells grown by organometallic vapor‐phase epitaxy with 0≤x≤1 , 1990 .

[8]  David J. Frank,et al.  Empirical fit to band discontinuities and barrier heights in III–V alloy systems , 1992 .

[9]  O. Berolo,et al.  Effect of Disorder on the Conduction-Band Effective Mass, Valence-Band Spin-Orbit Splitting, and the Direct Band Gap in III-V Alloys , 1973 .

[10]  M P C M Krijn,et al.  Heterojunction band offsets and effective masses in III-V quaternary alloys , 1991 .

[11]  Zunger,et al.  Electronic structure of semiconductor quantum films. , 1993, Physical review. B, Condensed matter.

[12]  N. Bouarissa,et al.  Band structure of III-V ternary semiconductor alloys beyond the VCA , 2003 .

[13]  Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers , 2008 .

[14]  Allan,et al.  Band-edge deformation potentials in a tight-binding framework. , 1988, Physical review. B, Condensed matter.

[15]  Andrew J. Williamson,et al.  InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures , 1999 .

[16]  K. Hellwege,et al.  Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .

[17]  C. Herring,et al.  Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering , 1956 .

[18]  Brey,et al.  Deformation potentials at the valence-band maximum in semiconductors. , 1987, Physical review. B, Condensed matter.

[19]  Lin-Wang Wang,et al.  Electronic Structure Pseudopotential Calculations of Large (.apprx.1000 Atoms) Si Quantum Dots , 1994 .

[20]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[21]  Hybertsen,et al.  Local empirical pseudopotential approach to the optical properties of Si/Ge superlattices. , 1989, Physical review. B, Condensed matter.

[22]  Confinement, surface, and chemisorption effects on the optical properties of Si quantum wires. , 1994, Physical review. B, Condensed matter.

[23]  W. D. Johnston,et al.  Misfit stress in InGaAs/InP heteroepitaxial structures grown by vapor‐phase epitaxy , 1985 .

[24]  Sadao Adachi,et al.  Properties of Semiconductor Alloys , 2009 .

[25]  S. Adachi Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors , 2009 .

[26]  K. Brennan,et al.  Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN , 2000 .

[27]  R. Driad,et al.  Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment , 1998 .

[28]  Sadao Adachi,et al.  Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4‐μm optoelectronic device applications , 1987 .

[29]  M. Fischetti,et al.  Theory and Calculation of the Deformation Potential Electron-Phonon Scattering Rates in Semiconductors , 1991 .

[30]  M. Chandrasekhar,et al.  Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs , 1977 .

[31]  Manuel Cardona,et al.  Theory of the temperature dependence of the direct gap of germanium , 1981 .

[32]  Fred H. Pollak,et al.  Piezo-Electroreflectance in Ge, GaAs, and Si , 1968 .

[33]  Karl Hess,et al.  Monte Carlo Device Simulation: Full Band and Beyond , 1991 .

[34]  Martin,et al.  Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs. , 1985, Physical review. B, Condensed matter.

[35]  J. Welser,et al.  Comparative study of phonon‐limited mobility of two‐dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field‐effect transistors , 1996 .

[36]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[37]  N. Bouarissa Effects of compositional disorder upon electronic and lattice properties of GaxIn1−xAs , 1998 .

[38]  Ma,et al.  Band structure and symmetry analysis of coherently grown Si1-xGex alloys on oriented substrates. , 1993, Physical review. B, Condensed matter.

[39]  Vogl,et al.  Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. , 1993, Physical review. B, Condensed matter.

[40]  Martin,et al.  Theoretical calculations of heterojunction discontinuities in the Si/Ge system. , 1986, Physical review. B, Condensed matter.

[41]  I. Balslev,et al.  Influence of Uniaxial Stress on the Indirect Absorption Edge in Silicon and Germanium , 1966 .

[42]  A. Zunger,et al.  Negative band gap bowing in epitaxial InAs/GaAs alloys and predicted band offsets of the strained binaries and alloys on various substrates , 2002 .

[43]  A. Eisenbach,et al.  Relation between photoluminescence wavelength and lattice mismatch in metalorganic vapor-phase epitaxy InGaAs/InP , 1993 .

[44]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[45]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[46]  Dimitri A. Antoniadis,et al.  Strained Ge channel p-type metal–oxide–semiconductor field-effect transistors grown on Si1−xGex/Si virtual substrates , 2001 .

[47]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[48]  M. Cardona,et al.  Fundamentals of semiconductors : physics and materials properties , 1997 .

[49]  M. Fischetti,et al.  On the enhanced electron mobility in strained-silicon inversion layers , 2002 .

[50]  Zunger,et al.  Empirical atomic pseudopotentials for AlAs/GaAs superlattices, alloys, and nanostructures. , 1994, Physical review. B, Condensed matter.

[51]  N. Bouarissa,et al.  Pseudopotential calculations of electronic properties of Ga1−xInxN alloys with zinc-blende structure , 2000 .

[52]  S. Thompson,et al.  Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors , 2007 .

[53]  Wei,et al.  Localization and percolation in semiconductor alloys: GaAsN vs GaAsP. , 1996, Physical review. B, Condensed matter.

[54]  Keith A. Jenkins,et al.  Strained Si CMOS (SS CMOS) technology: Opportunities and challenges , 2003 .

[55]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[56]  A. Freeman,et al.  Computational band-structure engineering of III–V semiconductor alloys , 2001 .