Microtubule flux: drivers wanted.

While the metaphase spindle maintains a constant shape and size during cell division, its major component microtubules are continuously being polymerized, depolymerized and transported towards the two spindle poles in a process called microtubule poleward flux. This process has been observed in all metazoan cells. Recent studies have indicated that Kinesin-5s, which can drive the relative sliding of microtubules, and kinesin-13s, which regulate microtubule polymerization, are directly involved in microtubule poleward flux. The availability of molecular and chemical tools to perturb protein functions together with improvements in imaging and analytical methods have allowed the examination of these two kinesins' roles in poleward flux at high temporal and spatial resolution. These advances have shed some light on the molecular mechanisms that drive microtubule poleward flux.

[1]  D. Compton,et al.  The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK , 2004, The Journal of cell biology.

[2]  C. Rieder,et al.  Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle , 1994, The Journal of cell biology.

[3]  E. Peterman,et al.  Allosteric inhibition of kinesin-5 modulates its processive directional motility , 2006, Nature chemical biology.

[4]  L. Wordeman Microtubule-depolymerizing kinesins. , 2005, Current opinion in cell biology.

[5]  J. Scholey,et al.  Microtubule Flux and Sliding in mitotic spindles of Drosophila Embryos , 2003, Microscopy and Microanalysis.

[6]  Kendra S. Burbank,et al.  The kinesin Eg5 drives poleward microtubule flux in Xenopus laevis egg extract spindles , 2004, The Journal of cell biology.

[7]  Timothy J. Mitchison,et al.  Mitotic spindle organization by a plus-end-directed microtubule motor , 1992, Nature.

[8]  G. C. Rogers,et al.  Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase , 2004, Nature.

[9]  J. Scholey,et al.  A "slow" homotetrameric kinesin-related motor protein purified from Drosophila embryos. , 1994, The Journal of biological chemistry.

[10]  Timothy J. Mitchison,et al.  Microtubule dynamic instability , 2006, Current Biology.

[11]  A. Hyman,et al.  Reconstitution of Physiological Microtubule Dynamics Using Purified Components , 2001, Science.

[12]  G. Borisy,et al.  Kinetochore microtubule dynamics and the metaphase-anaphase transition , 1995, The Journal of cell biology.

[13]  T. Mitchison,et al.  Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence , 1989, The Journal of cell biology.

[14]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[15]  T. Kapoor,et al.  Bipolarization and poleward flux correlate during Xenopus extract spindle assembly. , 2004, Molecular biology of the cell.

[16]  H. Huxley Sliding filaments and molecular motile systems. , 1990, The Journal of biological chemistry.

[17]  C. Rieder The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. , 1982, International review of cytology.

[18]  Timothy J. Mitchison,et al.  Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles , 2003, The Journal of cell biology.

[19]  D. Compton,et al.  Efficient Mitosis in Human Cells Lacking Poleward Microtubule Flux , 2005, Current Biology.

[20]  R. Baskin,et al.  A bipolar kinesin , 1996, Nature.

[21]  Gaudenz Danuser,et al.  Kinesin 5–independent poleward flux of kinetochore microtubules in PtK1 cells , 2006, The Journal of cell biology.

[22]  G. Danuser,et al.  Quantitative fluorescent speckle microscopy: where it came from and where it is going , 2003, Journal of microscopy.

[23]  H. Maiato,et al.  Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres , 2005, Nature Cell Biology.

[24]  T. Mitchison,et al.  Poleward Microtubule Flux in Mitotic Spindles Assembled in Vitro , 2002 .

[25]  R. Vale,et al.  The way things move: looking under the hood of molecular motor proteins. , 2000, Science.

[26]  T. Mitchison,et al.  Eg5 Causes Elongation of Meiotic Spindles When Flux-Associated Microtubule Depolymerization Is Blocked , 2004, Current Biology.

[27]  D. Cimini,et al.  Aurora Kinase Promotes Turnover of Kinetochore Microtubules to Reduce Chromosome Segregation Errors , 2006, Current Biology.

[28]  K. Oegema,et al.  Poleward Microtubule Flux Is a Major Component of Spindle Dynamics and Anaphase A in Mitotic Drosophila Embryos , 2002, Current Biology.

[29]  G. C. Rogers,et al.  The bimC family of kinesins: essential bipolar mitotic motors driving centrosome separation. , 1997, Biochimica et biophysica acta.

[30]  G. C. Rogers,et al.  Microtubule motors in mitosis , 2000, Nature.

[31]  K. Kinzler,et al.  Genetic instabilities in human cancers , 1998, Nature.

[32]  Timothy J. Mitchison,et al.  Eg5 is static in bipolar spindles relative to tubulin , 2001, The Journal of cell biology.

[33]  D. Mastronarde,et al.  Kinetochore microtubules in PTK cells , 1992, The Journal of cell biology.

[34]  Toshio Yanagida,et al.  Direct observation of single kinesin molecules moving along microtubules , 1996, Nature.

[35]  T. Mitchison,et al.  Mitosis: a history of division , 2001, Nature Cell Biology.

[36]  E D Salmon,et al.  Tubulin dynamics in cultured mammalian cells , 1984, The Journal of cell biology.

[37]  T. Kapoor,et al.  Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles , 2004, The Journal of cell biology.

[38]  Timothy J. Mitchisont Explorer Microtubule flux in mitosis is independent of chromosomes, centrosomes, and antiparallel microtubules , 2003 .

[39]  Timothy J. Mitchison,et al.  Probing Spindle Assembly Mechanisms with Monastrol, a Small Molecule Inhibitor of the Mitotic Kinesin, Eg5 , 2000, The Journal of cell biology.

[40]  A. Khodjakov,et al.  E pluribus unum: towards a universal mechanism for spindle assembly. , 2004, Trends in cell biology.

[41]  Polly M. Fordyce,et al.  Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro , 2006, Nature Cell Biology.

[42]  S Inoué,et al.  1. EARLY HISTORY: THE DYNAMIC EQUILIBRIUM MODEL , 1995 .

[43]  P. Vallotton,et al.  Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study. , 2003, Biophysical journal.

[44]  Bruce F. McEwen,et al.  Kinetochores Use a Novel Mechanism for Coordinating the Dynamics of Individual Microtubules , 2006, Current Biology.

[45]  Timothy J. Mitchison,et al.  Kin I Kinesins Are Microtubule-Destabilizing Enzymes , 1999, Cell.

[46]  E. Peterman,et al.  The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks , 2005, Nature.