Cellular energetic metabolism in sepsis: the need for a systems approach.

[1]  L. Moldawer,et al.  Cecal Ligation and Puncture , 2010, Current protocols in immunology.

[2]  G. Bellingan,et al.  Endotoxin reduces maximal oxygen consumption in hepatocytes independent of any hypoxic insult , 1998, Intensive Care Medicine.

[3]  D. Nicholls Forty years of Mitchell's proton circuit: From little grey books to little grey cells. , 2008, Biochimica et biophysica acta.

[4]  M. Singer,et al.  Oxygen consumption of human peripheral blood mononuclear cells in severe human sepsis * , 2007, Critical care medicine.

[5]  M. Carraway,et al.  Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. , 2007, American journal of respiratory and critical care medicine.

[6]  M. Brand,et al.  Novel uncoupling proteins. , 2007, Novartis Foundation symposium.

[7]  M. Singer,et al.  Mechanisms of sepsis-induced organ dysfunction , 2007, Critical care medicine.

[8]  V. Borutaite,et al.  Nitric oxide from neuronal nitric oxide synthase sensitises neurons to hypoxia‐induced death via competitive inhibition of cytochrome oxidase , 2007, Journal of neurochemistry.

[9]  M. Singer,et al.  Succinate recovers mitochondrial oxygen consumption in septic rat skeletal muscle , 2007, Critical care medicine.

[10]  T. Ravikumar,et al.  Pro-inflammatory cytokines from Kupffer cells downregulate hepatocyte expression of adrenomedullin binding protein-1. , 2007, Biochimica et biophysica acta.

[11]  M. Singer,et al.  Tissue oxygen monitoring in rodent models of shock. , 2007, American journal of physiology. Heart and circulatory physiology.

[12]  E. Vicaut,et al.  Plasma-induced endothelial oxidative stress is related to the severity of septic shock* , 2007, Critical care medicine.

[13]  M. Singer,et al.  Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery , 2007 .

[14]  O. Ljungqvist,et al.  Derangements in mitochondrial metabolism in intercostal and leg muscle of critically ill patients with sepsis-induced multiple organ failure. , 2006, American journal of physiology. Endocrinology and metabolism.

[15]  Y. Emre,et al.  The uncoupling protein 2 modulates the cytokine balance in innate immunity. , 2006, Cytokine.

[16]  B. Spiegelman,et al.  Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. , 2006, Endocrine reviews.

[17]  N. Chandel,et al.  Hypoxic conformance of metabolism in primary rat hepatocytes: a model of hepatic hibernation. , 2006, Hepatology.

[18]  M. Singer,et al.  Mitochondrial dysfunction in patients with severe sepsis: an EPR interrogation of individual respiratory chain components. , 2006, Biochimica et biophysica acta.

[19]  D. Harrison,et al.  The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004: secondary analysis of a high quality clinical database, the ICNARC Case Mix Programme Database , 2006, Critical care.

[20]  Theo Wallimann,et al.  Mitochondrial creatine kinase in human health and disease. , 2006, Biochimica et biophysica acta.

[21]  D. Wallace,et al.  The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. , 2005, The Biochemical journal.

[22]  M. Brand,et al.  The efficiency and plasticity of mitochondrial energy transduction. , 2005, Biochemical Society transactions.

[23]  J. Wernerman,et al.  Temporal changes in whole-blood and plasma glutathione in ICU patients with multiple organ failure , 2005, Intensive Care Medicine.

[24]  S. Moncada,et al.  NITRIC OXIDE FROM INDUCIBLE NITRIC OXIDE SYNTHASE SENSITIZES THE INFLAMED AORTA TO HYPOXIC DAMAGE VIA RESPIRATORY INHIBITION , 2005, Shock.

[25]  G. Van den Berghe,et al.  Endocrine interventions in the ICU. , 2005, European journal of internal medicine.

[26]  M. J. Wagner,et al.  Modular kinetic analysis of the adenine nucleotide translocator-mediated effects of palmitoyl-CoA on the oxidative phosphorylation in isolated rat liver mitochondria. , 2005, Diabetes.

[27]  P. Bollaert,et al.  Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study , 2005, The Lancet.

[28]  M. Singer,et al.  Hypoxia accelerates nitric oxide-dependent inhibition of mitochondrial complex I in activated macrophages. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[29]  P. Boekstegers,et al.  Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: Comparison to limited infection and cardiogenic shock , 1991, Infection.

[30]  S. Moncada,et al.  Nitric oxide from inflammatory‐activated glia synergizes with hypoxia to induce neuronal death , 2005, Journal of neuroscience research.

[31]  M. Carraway,et al.  Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. , 2004, Cardiovascular research.

[32]  D. Hardie The AMP-activated protein kinase pathway – new players upstream and downstream , 2004, Journal of Cell Science.

[33]  E. Crouser Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. , 2004, Mitochondrion.

[34]  Domenico Vitale,et al.  Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation , 2004, The Lancet.

[35]  E. Nylén,et al.  Endocrine Changes in Critical Illness , 2004, Journal of intensive care medicine.

[36]  Marco Novelli,et al.  Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[37]  E. Clementi,et al.  Mitochondrial biogenesis as a cellular signaling framework (vol 67, pg 1, 2004) , 2004 .

[38]  E. Bauereisen,et al.  Oxygen supply and uptake in the liver and the intestine , 1975, Pflügers Archiv.

[39]  E. Clementi,et al.  Mitochondrial biogenesis as a cellular signaling framework. , 2004, Biochemical pharmacology.

[40]  J. Wernerman,et al.  Temporal changes in muscle glutathione in ICU patients , 2003, Intensive Care Medicine.

[41]  Peter Radermacher,et al.  Metabolic alterations in sepsis and vasoactive drug–related metabolic effects , 2003, Current opinion in critical care.

[42]  D. Hardie,et al.  Management of cellular energy by the AMP‐activated protein kinase system , 2003, FEBS letters.

[43]  Bernhard Kadenbach,et al.  Intrinsic and extrinsic uncoupling of oxidative phosphorylation. , 2003, Biochimica et biophysica acta.

[44]  D. Mannino,et al.  The epidemiology of sepsis in the United States from 1979 through 2000. , 2003, The New England journal of medicine.

[45]  M. Fink,et al.  Proinflammatory cytokines increase the rate of glycolysis and adenosine-5′-triphosphate turnover in cultured rat enterocytes , 2003, Critical care medicine.

[46]  E. Clementi,et al.  Mitochondrial Biogenesis in Mammals: The Role of Endogenous Nitric Oxide , 2003, Science.

[47]  R. Hotchkiss,et al.  The pathophysiology and treatment of sepsis. , 2003, The New England journal of medicine.

[48]  P. Schumacker Current paradigms in cellular oxygen sensing. , 2003, Advances in experimental medicine and biology.

[49]  M. Fink Bench-to-bedside review: Cytopathic hypoxia , 2002, Critical care.

[50]  John Land,et al.  Association between mitochondrial dysfunction and severity and outcome of septic shock , 2002, The Lancet.

[51]  M. Rigoulet,et al.  Thyroid Status Is a Key Regulator of Both Flux and Efficiency of Oxidative Phosphorylation in Rat Hepatocytes , 2002, Journal of bioenergetics and biomembranes.

[52]  E. Crouser,et al.  Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity , 2002, Critical care medicine.

[53]  Jiandie D. Lin,et al.  Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. , 2001, Molecular cell.

[54]  R. Boutilier,et al.  Mechanisms of cell survival in hypoxia and hypothermia. , 2001, The Journal of experimental biology.

[55]  Derek C. Angus,et al.  Epidemiology of sepsis: An update , 2001, Critical care medicine.

[56]  T. Evans,et al.  Tissue oxygenation and perfusion in patients with systemic sepsis , 2001, Critical care medicine.

[57]  D. De Backer,et al.  Assessment of the microcirculatory flow in patients in the intensive care unit , 2001, Current opinion in critical care.

[58]  W. Wieser,et al.  Hierarchies of ATP-consuming processes: direct compared with indirect measurements, and comparative aspects. , 2001, The Biochemical journal.

[59]  B. Miroux,et al.  Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production , 2000, Nature Genetics.

[60]  A. Kralli,et al.  A Tissue-Specific Coactivator of Steroid Receptors, Identified in a Functional Genetic Screen , 2000, Molecular and Cellular Biology.

[61]  M. Fischer,et al.  Impact of acute renal failure on antioxidant status in multiple organ failure , 2000, Acta anaesthesiologica Scandinavica.

[62]  L. U. G. Attinoni,et al.  A TRIAL OF GOAL-ORIENTED HEMODYNAMIC THERAPY IN CRITICALLY ILL PATIENTS , 2000 .

[63]  M. Singer,et al.  Mitochondrial dysfunction in sepsis , 2003, Current infectious disease reports.

[64]  M. Brand,et al.  The responses of rat hepatocytes to glucagon and adrenaline. Application of quantified elasticity analysis. , 2001, European journal of biochemistry.

[65]  H. Esterbauer,et al.  Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. , 1999, Genomics.

[66]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[67]  R. Hotchkiss,et al.  Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. , 1999, Critical care medicine.

[68]  R. Wolfe Sepsis as a modulator of adaptation to low and high carbohydrate and low and high fat intakes , 1999, European Journal of Clinical Nutrition.

[69]  M. Carraway,et al.  Oxidative metabolism in rat hepatocytes and mitochondria during sepsis. , 1997, Archives of biochemistry and biophysics.

[70]  G. Brown,et al.  Cellular energy utilization and molecular origin of standard metabolic rate in mammals. , 1997, Physiological reviews.

[71]  J. Fischer,et al.  Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. , 1996, The Journal of clinical investigation.

[72]  M. Brand,et al.  Top down metabolic control analysis. , 1996, Journal of theoretical biology.

[73]  M. Singer,et al.  Cardiorespiratory and tissue oxygen dose response to rat endotoxemia. , 1996, The American journal of physiology.

[74]  H. Michie,et al.  Metabolism of Sepsis and Multiple Organ Failure , 1996, World Journal of Surgery.

[75]  M. O’connor,et al.  DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[76]  F. Buttgereit,et al.  A hierarchy of ATP-consuming processes in mammalian cells. , 1995, The Biochemical journal.

[77]  C. Sprung,et al.  Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. , 1995, Critical care medicine.

[78]  François Gouin,et al.  Incidence, Risk Factors, and Outcome of Severe Sepsis and Septic Shock in Adults: A Multicenter Prospective Study in Intensive Care Units , 1995 .

[79]  F Doyon,et al.  Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. , 1995, JAMA.

[80]  R. Wenzel,et al.  Long-term survival and function after suspected gram-negative sepsis. , 1995, JAMA.

[81]  M. Fink,et al.  Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. , 1995, Critical care medicine.

[82]  D. Wilmore,et al.  The duration of infection modifies mitochondrial oxidative capacity in rat skeletal muscle. , 1995, The Journal of surgical research.

[83]  H. Kacser,et al.  The control of flux. , 1995, Biochemical Society transactions.

[84]  P. Rothwell,et al.  Prediction of outcome in intensive care patients using endocrine parameters. , 1995, Critical care medicine.

[85]  A. J. Hulbert,et al.  Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. , 1994, Biochimica et biophysica acta.

[86]  M. Brand,et al.  Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions. , 1994, Canadian journal of physiology and pharmacology.

[87]  C. Hinds,et al.  Elevation of systemic oxygen delivery in the treatment of critically ill patients. , 1994, The New England journal of medicine.

[88]  H. Westerhoff,et al.  Modular analysis of the control of complex metabolic pathways. , 1993, Biophysical chemistry.

[89]  A. Agustí,et al.  Oxygen conformance of cellular respiration in hepatocytes. , 1993, The American journal of physiology.

[90]  S. Matthaei,et al.  Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock , 1993, Critical care medicine.

[91]  H. C. Taylor,et al.  Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. , 1993, The Biochemical journal.

[92]  G. Semenza,et al.  General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[93]  F. Buttgereit,et al.  Effects of methylprednisolone on the energy metabolism of quiescent and conA-stimulated thymocytes of the rat , 1993, Bioscience reports.

[94]  W. Knaus,et al.  Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. , 1992, Chest.

[95]  G. Brown,et al.  Control of respiration and ATP synthesis in mammalian mitochondria and cells. , 1992, The Biochemical journal.

[96]  R. Paul,et al.  The nature of fuel provision for the Na+,K(+)‐ATPase in porcine vascular smooth muscle. , 1992, The Journal of physiology.

[97]  S. Moncada,et al.  Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. , 1990, Biochemical and biophysical research communications.

[98]  G. Brown,et al.  Control of respiration and oxidative phosphorylation in isolated rat liver cells. , 1990, European journal of biochemistry.

[99]  E. Bradley,et al.  Hepatic oxygen supply-uptake relationship and metabolism during anesthesia in miniature pigs. , 1990, Anesthesiology.

[100]  G. Brown,et al.  Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. , 1990, European journal of biochemistry.

[101]  G. Brown,et al.  A 'top-down' approach to the determination of control coefficients in metabolic control theory. , 1990, European journal of biochemistry.

[102]  M. Murphy,et al.  Slip and leak in mitochondrial oxidative phosphorylation. , 1989, Biochimica et biophysica acta.

[103]  A. Kurtz,et al.  Oxygen sensing in the kidney and its relation to erythropoietin production. , 1989, Annual review of physiology.

[104]  D. I. Edelstone,et al.  Hepatic oxygenation during arterial hypoxemia in neonatal lambs. , 1984, American journal of obstetrics and gynecology.

[105]  D. Wilson,et al.  Oxygen dependence of cellular metabolism: The effect of O2 tension on gluconeogenesis and urea synthesis in isolated rat hepatocytes , 1984, Journal of cellular physiology.

[106]  H. Westerhoff,et al.  Quantification of the contribution of various steps to the control of mitochondrial respiration. , 1982, The Journal of biological chemistry.

[107]  H. S. Mason,et al.  Gradients of O2 concentration in hepatocytes. , 1978, The Journal of biological chemistry.

[108]  D. E. Atkinson Cellular Energy Metabolism and its Regulation , 1977 .

[109]  Reinhart Heinrich,et al.  Linear theory of enzymatic chains; its application for the analysis of the crossover theorem and of the glycolysis of human erythrocytes. , 1973, Acta biologica et medica Germanica.

[110]  C. M. Martin,et al.  Gram-negative rod bacteremia. , 1969, The Journal of infectious diseases.

[111]  B. Ruebner,et al.  Hepatic changes produced by a single dose of endotoxin in the mouse. Electron microscopy. , 1968, The American journal of pathology.

[112]  B. Ruebner,et al.  Hepatic changes produced by a single dose of endotoxin in the mouse. Light microscopy and histochemistry. , 1967, The American journal of pathology.

[113]  U. G. Hodgin,et al.  Gram-negative rod bacteremia: An analysis of 100 patients , 1965 .

[114]  M. Weil,et al.  EXCESS LACTATE: AN INDEX OF REVERSIBILITY OF SHOCK IN HUMAN PATIENTS. , 1964, Science.

[115]  Max H. Weil,et al.  Excess Lactate: An Index of Reversibility of Shock in Human Patients , 1964, Science.

[116]  S. Pocock,et al.  Incidence , , 2018 .