A generalised distributed‐order Maxwell model

In this work, we present a generalised viscoelastic model using distributed‐order derivatives. The model consists of two distributed‐order elements (distributed springpots) connected in series, as in the Maxwell model. The new model generalises the fractional viscoelastic model presented by Schiessel and Blumen and allows for a more broad and accurate description of complex fluids when a proper weighting function of the order of the derivatives is chosen. We discuss the connection between classical, fractional and viscoelastic models of distributed order and highlight the fundamental concepts that support these constitutive equations. We also derive the relaxation modulus, the storage and loss modulus and the creep compliance for specific weighting functions.

[1]  Zhanqing Chen,et al.  Rheological analysis of the general fractional-order viscoelastic model involving the Miller–Ross kernel , 2021, Acta Mechanica.

[2]  M. L. Morgado,et al.  A generalised Phan–Thien—Tanner model , 2019, Journal of Non-Newtonian Fluid Mechanics.

[3]  M. L. Morgado,et al.  Recent Advances in Complex Fluids Modeling , 2019, Fluid Flow Problems.

[4]  J. M. Nóbrega,et al.  Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries , 2018, Computers & Fluids.

[5]  D. Yao A fractional dashpot for nonlinear viscoelastic fluids , 2018 .

[6]  J. M. Nóbrega,et al.  A primer on experimental and computational rheology with fractional viscoelastic constitutive models , 2017 .

[7]  S. Manneville,et al.  Nonlinear Viscoelasticity and Generalized Failure Criterion for Polymer Gels. , 2016, ACS macro letters.

[8]  Gareth H. McKinley,et al.  A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids , 2014 .

[9]  R. Gorenflo,et al.  Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density , 2013 .

[10]  N. Phan-Thien,et al.  Fluid Mechanics of Viscoelasticity: General Principles, Constitutive Modelling, Analytical and Numerical Techniques , 2011 .

[11]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[12]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[13]  R. Gorenflo,et al.  Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.

[14]  G. McKinley,et al.  Linear to Non-linear Rheology of Wheat Flour Dough , 2006 .

[15]  Teodor M. Atanackovic,et al.  On a distributed derivative model of a viscoelastic body , 2003 .

[16]  T. Atanacković A generalized model for the uniaxial isothermal deformation of a viscoelastic body , 2002 .

[17]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[18]  R. Metzler,et al.  Generalized viscoelastic models: their fractional equations with solutions , 1995 .

[19]  Helmut Schiessel,et al.  Hierarchical analogues to fractional relaxation equations , 1993 .

[20]  C. Friedrich Relaxation and retardation functions of the Maxwell model with fractional derivatives , 1991 .

[21]  R. Koeller Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .

[22]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[23]  H. Markovitz Boltzmann and the Beginnings of Linear Viscoelasticity , 1977 .

[24]  G. W. Blair The role of psychophysics in rheology , 1947 .

[25]  H. Dingle XXXIV. On the dimensions of physical magnitudes , 1942 .

[26]  James Clerk Maxwell,et al.  IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.

[27]  Yang Ju,et al.  General Fractional Calculus with Nonsingular Kernels: New Prospective on Viscoelasticity , 2022 .

[28]  General Fractional Derivatives with Applications in Viscoelasticity , 2020 .

[29]  Arak M. Mathai,et al.  A handbook of generalized special functions for statistical and physical sciences , 1993 .

[30]  Arak M. Mathai,et al.  The H-function with applications in statistics and other disciplines , 1978 .

[31]  M. Brereton Dynamics of Polymeric Liquids , 1978 .

[32]  A. Pipkin,et al.  Lectures on Viscoelasticity Theory , 1972 .

[33]  H. Dingle VII. On the dimensions of physical magnitudes (Seventh paper:A paradox in dimensional theory) , 1949 .

[34]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[35]  P. P. A Text-book of Physics , 1914, Nature.

[36]  F. Kohlrausch Experimental-Untersuchungen über die elastische Nachwirkung bei der Torsion, Ausdehnung und Biegung , 1876 .