A generalised distributed‐order Maxwell model
暂无分享,去创建一个
[1] Zhanqing Chen,et al. Rheological analysis of the general fractional-order viscoelastic model involving the Miller–Ross kernel , 2021, Acta Mechanica.
[2] M. L. Morgado,et al. A generalised Phan–Thien—Tanner model , 2019, Journal of Non-Newtonian Fluid Mechanics.
[3] M. L. Morgado,et al. Recent Advances in Complex Fluids Modeling , 2019, Fluid Flow Problems.
[4] J. M. Nóbrega,et al. Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries , 2018, Computers & Fluids.
[5] D. Yao. A fractional dashpot for nonlinear viscoelastic fluids , 2018 .
[6] J. M. Nóbrega,et al. A primer on experimental and computational rheology with fractional viscoelastic constitutive models , 2017 .
[7] S. Manneville,et al. Nonlinear Viscoelasticity and Generalized Failure Criterion for Polymer Gels. , 2016, ACS macro letters.
[8] Gareth H. McKinley,et al. A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids , 2014 .
[9] R. Gorenflo,et al. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density , 2013 .
[10] N. Phan-Thien,et al. Fluid Mechanics of Viscoelasticity: General Principles, Constitutive Modelling, Analytical and Numerical Techniques , 2011 .
[11] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .
[12] R. Gorenflo,et al. Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.
[13] R. Gorenflo,et al. Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.
[14] G. McKinley,et al. Linear to Non-linear Rheology of Wheat Flour Dough , 2006 .
[15] Teodor M. Atanackovic,et al. On a distributed derivative model of a viscoelastic body , 2003 .
[16] T. Atanacković. A generalized model for the uniaxial isothermal deformation of a viscoelastic body , 2002 .
[17] N. Ford,et al. Analysis of Fractional Differential Equations , 2002 .
[18] R. Metzler,et al. Generalized viscoelastic models: their fractional equations with solutions , 1995 .
[19] Helmut Schiessel,et al. Hierarchical analogues to fractional relaxation equations , 1993 .
[20] C. Friedrich. Relaxation and retardation functions of the Maxwell model with fractional derivatives , 1991 .
[21] R. Koeller. Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .
[22] R. Koeller. Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .
[23] H. Markovitz. Boltzmann and the Beginnings of Linear Viscoelasticity , 1977 .
[24] G. W. Blair. The role of psychophysics in rheology , 1947 .
[25] H. Dingle. XXXIV. On the dimensions of physical magnitudes , 1942 .
[26] James Clerk Maxwell,et al. IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.
[27] Yang Ju,et al. General Fractional Calculus with Nonsingular Kernels: New Prospective on Viscoelasticity , 2022 .
[28] General Fractional Derivatives with Applications in Viscoelasticity , 2020 .
[29] Arak M. Mathai,et al. A handbook of generalized special functions for statistical and physical sciences , 1993 .
[30] Arak M. Mathai,et al. The H-function with applications in statistics and other disciplines , 1978 .
[31] M. Brereton. Dynamics of Polymeric Liquids , 1978 .
[32] A. Pipkin,et al. Lectures on Viscoelasticity Theory , 1972 .
[33] H. Dingle. VII. On the dimensions of physical magnitudes (Seventh paper:A paradox in dimensional theory) , 1949 .
[34] G. B.. The Dynamical Theory of Gases , 1916, Nature.
[35] P. P.. A Text-book of Physics , 1914, Nature.
[36] F. Kohlrausch. Experimental-Untersuchungen über die elastische Nachwirkung bei der Torsion, Ausdehnung und Biegung , 1876 .