Inherently chiral biscalixarene cone-cone conformers consisting of calix[4]arene and calix[5]arene subunits

[1]  A. Casnati,et al.  One-shot preparation of an inherently chiral trifunctional calix[4]arene from an easily available cone-triformylcalix[4]arene. , 2013, Organic & biomolecular chemistry.

[2]  G. Fukuhara,et al.  Inherently Chiral Resorcin[4]arenes with Urea and Amide Side Arms: Synthesis, Structure and Chiral Recognition , 2013 .

[3]  Jun Luo,et al.  An inherently chiral calix[4]crown carboxylic acid in the partial cone conformation , 2013, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[4]  Liang Zhao,et al.  Synthesis and functionalization of inherently chiral tetraoxacalix[2]arene[2]pyridines. , 2012, Organic letters.

[5]  Bastien Chatelet,et al.  Absolute configuration and enantiodifferentiation of a hemicryptophane incorporating an azaphosphatrane moiety. , 2012, Chirality.

[6]  Ke Yang,et al.  Chemical resolution and chiral recognition of an inherently chiral biscalix[4]arene cone–partial cone conformer , 2012 .

[7]  S. G. Garasevich,et al.  Stereoselective synthesis of enantiomerically pure inherently chiral p-tert-butylcalix[4]arene carboxylic acids , 2012 .

[8]  S. Böhm,et al.  Unprecedented meta-substitution of calixarenes: direct way to inherently chiral derivatives. , 2012, Organic letters.

[9]  B. Neumann,et al.  Inherently Chiral Cyano‐Substituted Resorcin[4]arene: A Promising Starting Point for Further Functionalization , 2012 .

[10]  N. P. Bizier,et al.  Single‐Step, Regioselective Synthesis of Diazadioxacalix[4]arenes and Diazadioxa[14]cyclophanes Bearing an Alternating N/O‐Bridge Pattern , 2012 .

[11]  T. Pilati,et al.  Picturing the induced fit of calix[5]arenes upon n-alkylammonium cation binding , 2012 .

[12]  Jun Luo,et al.  An inherently chiral calix[4]crown carboxylic acid in the 1,2-alternate conformation , 2012, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[13]  Qi-yu Zheng,et al.  Synthesis, structure, fullerene-binding and resolution of C3-symmetric cavitands with rigid and deep cavities. , 2012, Organic & biomolecular chemistry.

[14]  J. Raimundo,et al.  A new approach to inherent chirality through the N/S ratio and/or the position in mixed heterocalix[4]arenes. , 2011, Chemical communications.

[15]  J. Dutasta,et al.  Inherently chiral phosphonatocavitands as artificial chemo- and enantio-selective receptors of natural ammoniums. , 2011, Organic & biomolecular chemistry.

[16]  J. Mattay,et al.  Inherently chiral resorcin[4]arenes: a new concept for improving the functionality. , 2011, Organic letters.

[17]  J. Dutasta,et al.  Exclusive enantioselective recognition of glucopyranosides by inherently chiral hemicryptophanes. , 2011, Chemical communications.

[18]  H. Ågren,et al.  Enantioselective complexation of chiral propylene oxide by an enantiopure water-soluble cryptophane. , 2011, The Journal of organic chemistry.

[19]  Jun Luo,et al.  Inherently chiral calixarenes: a decade’s review , 2011 .

[20]  S. Böhm,et al.  Meta nitration of thiacalixarenes. , 2010, The Journal of organic chemistry.

[21]  J. Dutasta,et al.  Resolution and absolute configuration assignment of a chiral hemicryptophane molecular cage. , 2010, Chirality.

[22]  A. Szumna Inherently chiral concave molecules--from synthesis to applications. , 2010, Chemical Society reviews.

[23]  G. Arnott,et al.  Synthesis of inherently chiral calix[4]arenes: stereocontrol through ligand choice. , 2010, Organic Letters.

[24]  Zhiying Huang,et al.  Efficient synthesis and resolution of meta-substituted inherently chiral aminocalix[4]arene derivatives , 2010 .

[25]  J. L. Katz,et al.  Synthesis of inherently chiral azacalix[4]arenes and diazadioxacalix[4]arenes. , 2010, Organic letters.

[26]  J. Dutasta,et al.  The absolute configuration of an inherently chiral phosphonatocavitand and its use toward the enantioselective recognition of l-adrenaline , 2010 .

[27]  E. Zaborova,et al.  Can hetero-polysubstituted cyclodextrins be considered as inherently chiral concave molecules? , 2010, Angewandte Chemie.

[28]  W. Chung,et al.  Inherently chiral biscalix[4]arenes: design and syntheses. , 2010, The Journal of organic chemistry.

[29]  G. Arnott,et al.  An asymmetric ortholithiation approach to inherently chiral calix[4]arenes. , 2009, Organic Letters.

[30]  Chuan-Feng Chen,et al.  Synthesis and structures of novel enantiopure inherently chiral calix[4]arene-derived salphen ligands and their transition-metal complexes , 2009 .

[31]  C. Gaeta,et al.  Appending aromatic moieties at the para- and meta-position of calixarene phenol rings via p-bromodienone route , 2009 .

[32]  De‐Xian Wang,et al.  Synthesis, structure, and reactions of NH-bridged calix[m]arene[n]pyridines. , 2009, The Journal of organic chemistry.

[33]  R. Tamura,et al.  Azacalix[4]arene tetramethyl ether with inherent chirality generated by substitution on the nitrogen bridges , 2009 .

[34]  O. Reinaud,et al.  Selective hetero-trisfunctionalization of the large rim of a biomimetic calix[6]arene using host-guest chemistry as a synthetic tool. , 2008, Journal of the American Chemical Society.

[35]  Chuan-Feng Chen,et al.  Inherently chiral calix[4]arene-based bifunctional organocatalysts for enantioselective aldol reactions , 2008 .

[36]  M. Pecul,et al.  A Chiral “Frozen” Hydrogen Bonding in C4‐Symmetric Inherently Chiral Resorcin[4]arenes: NMR, X‐ray, Circular Dichroism, and Theoretical Study , 2008 .

[37]  Yong Yang,et al.  Effective nonenzymatic kinetic resolution of racemic m-nitro-substituted inherently chiral aminocalix[4]arenes. , 2008, Organic letters.

[38]  S. Grimme,et al.  Cavity‐Extended Inherently Chiral Resorcin[4]arenes: Synthesis and Chiroptical Properties of the Cycloenantiomers , 2008 .

[39]  De‐Xian Wang,et al.  En route to inherently chiral tetraoxacalix[2]arene[2]triazines , 2007 .

[40]  Chuan-feng Chen,et al.  A new approach to enantiopure inherently chiral calix[4]arenes: determination of their absolute configurations. , 2007, Organic letters.

[41]  Qi-yu Zheng,et al.  Preparation of enantiopure inherently chiral calix[5]arenes , 2005 .

[42]  Chiara Pasquini,et al.  “Inherent chirality” and curvature , 2004 .

[43]  David J. Williams,et al.  Calix[4]- and calix[5]arene-based multicavity macrocycles. , 2002, The Journal of organic chemistry.

[44]  S. Pappalardo,et al.  2‐(クロロメチル)ピリジン塩酸塩を用いたアルキル化によるp‐t‐ブチル[5]カリキサレンの官能化 , 1996 .

[45]  W. Vogt,et al.  Regioselective synthesis of calixcrowns derived from p-tert-butylcalix[5]arene , 1993 .

[46]  C. Gutsche Calixarenes: An Introduction , 1989 .