Asymptotic behavior of the eigenfrequencies of a thin elastic rod with non-uniform cross-section of extremely oblate shape
暂无分享,去创建一个
[1] S. Nazarov,et al. Asymptotic analysis of an elastic rod with rounded ends , 2020, Mathematical Methods in the Applied Sciences.
[2] Albert Y. Zomaya,et al. Partial Differential Equations , 2007, Explorations in Numerical Analysis.
[3] S. Nazarov,et al. Korn inequality for a thin rod with rounded ends , 2014 .
[4] Georges Griso,et al. ASYMPTOTIC BEHAVIOR OF STRUCTURES MADE OF CURVED RODS , 2011, 1109.1907.
[5] S. Nazarov. Uniform Estimates of Remainders in Asymptotic Expansions of Solutions to the Problem on Eigenoscillations of a Piezoelectric Plate , 2003 .
[6] J. Tambača. One‐dimensional approximations of the eigenvalue problem of curved rods , 2001 .
[7] J. M. Viaño,et al. Asymptotic modelling of a nonsymmetric beam , 2000 .
[8] J. M. Viaño,et al. Mathematical justification of stretching and torsional vibration models for elastic rods , 2000 .
[9] V. Maz'ya,et al. Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .
[10] J. M. Viaño,et al. Asymptotic analysis of torsional and stretching modes of thin rods , 2000 .
[11] S. Nazarov,et al. One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification , 2000 .
[12] S. Nazarov. Justification of the asymptotic theory of thin rods. Integral and pointwise estimates , 1999 .
[13] J. M. Viaño,et al. SECOND-ORDER ASYMPTOTIC APPROXIMATION OF FLEXURAL VIBRATIONS IN ELASTIC RODS , 1998 .
[14] N. Kerdid,et al. Analyse asymptotique des modes de hautes fréquences dans les poutres minces , 1998 .
[15] Philippe G. Ciarlet,et al. Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory , 1981 .
[16] S. Jimbo,et al. Asymptotic behavior of eigenfrequencies of a thin elastic rod with non-uniform cross-section , 2020 .
[17] S. Nazarov. Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness , 2002 .
[18] J. M. Viaño,et al. Mathematical model for elastic beams with longitudinally variable depth , 2001 .
[19] N. Kerdid. Modélisation des vibrations d'une multi-structure formée de deux poutres , 1995 .
[20] N. Kerdid. Comportement asymptotique quand l'épaisseur tend vers zéro du problème de valeurs propres pour une poutre mince encastrée en élasticité linéaire , 1993 .
[21] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[22] B. A. Shoikhet. On asymptotically exact equations of thin plates of complex structure: PMM vol. 37, n≗5, 1973, pp. 914–924 , 1973 .
[23] Dietrich Morgenstern,et al. Herleitung der plattentbeorie aus der dreidimensionalen elastizitätstheorie , 1959 .