Convergence acceleration of Runge-Kutta schemes for solving the Navier-Stokes equations

The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 can be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. This RK/implicit scheme is used as a smoother for multigrid. Fourier analysis is applied to determine damping properties. Numerical dissipation operators based on the Roe scheme, a matrix dissipation, and the CUSP scheme are considered in evaluating the RK/implicit scheme. In addition, the effect of the number of RK stages is examined. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. Turbulent flows over an airfoil and wing at subsonic and transonic conditions are computed. The effects of the cell aspect ratio on convergence are investigated for Reynolds numbers between 5.7x10^6 and 100x10^6. It is demonstrated that the implicit preconditioner can reduce the computational time of a well-tuned standard RK scheme by a factor between 4 and 10.

[1]  V. Venkatakrishnan,et al.  Uni-directional implicit acceleration techniques for compressible Navier-Stokes solvers , 1999 .

[2]  Eli Turkel,et al.  CONVERGENCE ACCELERATION FOR THE THREE DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS , 2006 .

[3]  R. C. Swanson,et al.  Efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations , 1990 .

[4]  J. Blazek Verfahren zur Beschleunigung der Lösung der Euler- und Navier-Stokes-Gleichungen bei stationären Über- und Hyperschallströmungen , 1994 .

[5]  R. Swanson,et al.  Multistage Schemes With Multigrid for Euler and Navier-Stokes Equations , 1997 .

[6]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[7]  Bram van Leer,et al.  Design of Optimally Smoothing Multi-Stage Schemes for the Euler Equations , 1989 .

[8]  A. Jameson ANALYSIS AND DESIGN OF NUMERICAL SCHEMES FOR GAS DYNAMICS, 1: ARTIFICIAL DIFFUSION, UPWIND BIASING, LIMITERS AND THEIR EFFECT ON ACCURACY AND MULTIGRID CONVERGENCE , 1995 .

[9]  Veer N. Vatsa,et al.  Development of an efficient multigrid code for 3-D Navier-Stokes equations , 1989 .

[10]  Eli Turkel,et al.  Convergence Acceleration for Multistage Time-Stepping Schemes , 2006 .

[11]  Jens K. Fassbender,et al.  Improved Robustness for Numerical Simulation of Turbulent Flows around Civil Transport Aircraft at Flight Reynolds Numbers , 2003 .

[12]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[13]  W. Mulder A new multigrid approach to convection problems , 1989 .

[14]  Cord-Christian Rossow,et al.  A flux-splitting scheme for compressible and incompressible flows , 2000 .

[15]  A. Jameson Solution of the Euler equations for two dimensional transonic flow by a multigrid method , 1983 .

[16]  Antony Jameson,et al.  How Many Steps are Required to Solve the Euler Equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm , 2001 .

[17]  Antony Jameson,et al.  Multigrid algorithms for compressible flow calculations , 1986 .

[18]  Cord-Christian Rossow,et al.  Convergence Acceleration for Solving the Compressible Navier-Stokes Equations , 2006 .

[19]  H. Lomax,et al.  Thin-layer approximation and algebraic model for separated turbulent flows , 1978 .

[20]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[21]  R. C. Swanson,et al.  A Study of Multigrid Preconditioners Using Eigensystem Analysis , 2005 .

[22]  Michael B. Giles,et al.  Preconditioned Multigrid Methods for Compressible Flow Calculations on Stretched Meshes , 1997 .

[23]  Rolf Radespiel,et al.  An efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations , 1989 .

[24]  Dimitri J. Mavriplis,et al.  On Convergence Acceleration Techniques for Unstructured Meshes , 1998 .

[25]  R. C. Swanson On Some Numerical Dissipation Schemes , 1998 .

[26]  Cord-Christian Rossow,et al.  Efficient computation of compressible and incompressible flows , 2007, J. Comput. Phys..

[27]  R. C. Swanson,et al.  On Central-Difference and Upwind Schemes , 1992 .

[28]  Antony Jameson,et al.  The Evolution of Computational Methods in Aerodynamics , 1983 .

[29]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[30]  Viktoria Schmitt,et al.  Pressure distributions on the ONERA M6 wing at transonic Mach numbers , 1979 .

[31]  Rolf Radespiel,et al.  Progress with multigrid schemes for hypersonic flow problems , 1995 .

[32]  D. Mavriplis Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstructured Meshes , 1997 .

[33]  R. LeVeque Approximate Riemann Solvers , 1992 .