FourU: a novel type of RNA thermometer in Salmonella

The translation of many heat shock and virulence genes is controlled by RNA thermometers. Usually, they are located in the 5′‐untranslated region (5′‐UTR) and block the Shine‐Dalgarno (SD) sequence by base pairing. Destabilization of the structure at elevated temperature permits ribosome binding and translation initiation. We have identified a new type of RNA thermometer in the 5′‐UTR of the Salmonella agsA gene, which codes for a small heat shock protein. Transcription of the agsA gene is controlled by the alternative sigma factor σ32. Additional translational control depends on a stretch of four uridines that pair with the SD sequence. Mutations in this region affect translation in vivo. Structure probing experiments demonstrate a temperature‐controlled opening of the SD region in vitro. Toeprinting (primer extension inhibition) shows that ribosome binding is dependent on high temperatures. Together with a postulated RNA thermometer upstream of the Yersinia pestis virulence gene lcrF (virF), the 5′‐UTR of Salmonella agsA might be the founding member of a new class of RNA thermometers that we propose to name ‘fourU’ thermometers.

[1]  J. Vogel,et al.  The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium , 2007, Molecular microbiology.

[2]  K. Struhl,et al.  Extensive functional overlap between σ factors in Escherichia coli , 2006, Nature Structural &Molecular Biology.

[3]  F. Narberhaus,et al.  Molecular basis for temperature sensing by an RNA thermometer , 2006, The EMBO journal.

[4]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[5]  S. Dowd,et al.  Microarray based comparison of two Escherichia coli O157:H7 lineages , 2006, BMC Microbiology.

[6]  Torsten Waldminghaus,et al.  RNA thermometers. , 2006, FEMS microbiology reviews.

[7]  Torsten Waldminghaus,et al.  RNA thermometers are common in α- and γ-proteobacteria , 2005 .

[8]  T. Tomoyasu,et al.  ClpXP controls the expression of LEE genes in enterohaemorrhagic Escherichia coli. , 2005, FEMS microbiology letters.

[9]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[10]  John C. Doyle,et al.  Surviving heat shock: control strategies for robustness and performance. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Akira,et al.  The Salmonella Pathogenicity Island (SPI)-2 and SPI-1 Type III Secretion Systems Allow Salmonella Serovar typhimurium to Trigger Colitis via MyD88-Dependent and MyD88-Independent Mechanisms1 , 2005, The Journal of Immunology.

[12]  C. Baron,et al.  Replicon-Specific Regulation of Small Heat Shock Genes in Agrobacterium tumefaciens , 2004, Journal of bacteriology.

[13]  R. Breaker,et al.  Gene regulation by riboswitches , 2004, Nature Reviews Molecular Cell Biology.

[14]  P. Valentin‐Hansen,et al.  MicroReview: The bacterial Sm‐like protein Hfq: a key player in RNA transactions , 2004, Molecular microbiology.

[15]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[16]  M. Gelfand,et al.  Riboswitches: the oldest mechanism for the regulation of gene expression? , 2004, Trends in genetics : TIG.

[17]  M. Gelfand,et al.  Heat Shock (σ32 and HrcA/CIRCE) Regulons in β-, γ- and ε-Proteobacteria , 2004, Journal of Molecular Microbiology and Biotechnology.

[18]  Emma Kreuger,et al.  Temperature-controlled Structural Alterations of an RNA Thermometer* , 2003, Journal of Biological Chemistry.

[19]  T. Nagase,et al.  A New Heat Shock Gene, agsA, Which Encodes a Small Chaperone Involved in Suppressing Protein Aggregation in Salmonella enterica Serovar Typhimurium , 2003, Journal of bacteriology.

[20]  D. Grenier,et al.  Oral microbial heat-shock proteins and their potential contributions to infections. , 2003, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[21]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[22]  Jeffrey E. Barrick,et al.  Metabolite-binding RNA domains are present in the genes of eukaryotes. , 2003, RNA.

[23]  P. Cossart,et al.  RNA-mediated control of virulence gene expression in bacterial pathogens. , 2003, Trends in microbiology.

[24]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[25]  J. E. Peters,et al.  Definition of the Escherichia coli MC4100 Genome by Use of a DNA Array , 2003, Journal of bacteriology.

[26]  Hidenori Matsui,et al.  Lon, a Stress-Induced ATP-Dependent Protease, Is Critically Important for Systemic Salmonella enterica Serovar Typhimurium Infection of Mice , 2003, Infection and Immunity.

[27]  U. Gophna,et al.  Virulence and the heat shock response. , 2003, International journal of medical microbiology : IJMM.

[28]  P. Cossart,et al.  An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes , 2002, Cell.

[29]  R. Hengge-aronis,et al.  Signal Transduction and Regulatory Mechanisms Involved in Control of the σS (RpoS) Subunit of RNA Polymerase , 2002, Microbiology and Molecular Biology Reviews.

[30]  P. Valentin‐Hansen,et al.  Structures of the pleiotropic translational regulator Hfq and an Hfq–RNA complex: a bacterial Sm‐like protein , 2002, The EMBO journal.

[31]  F. Narberhaus α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network , 2002, Microbiology and Molecular Biology Reviews.

[32]  Y. Tu,et al.  Atom-Transfer Radical Polymerization to Synthesize Novel Liquid Crystalline Diblock Copolymers with Polystyrene and Mesogen-jacketed Liquid Crystal Polymer Segments , 2002 .

[33]  Akiko Takaya,et al.  The ATP-Dependent Lon Protease of Salmonella enterica Serovar Typhimurium Regulates Invasion and Expression of Genes Carried on Salmonella Pathogenicity Island 1 , 2002, Journal of bacteriology.

[34]  G. Storz,et al.  The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. , 2002, Molecular cell.

[35]  H. Hennecke,et al.  A mRNA-based thermosensor controls expression of rhizobial heat shock genes. , 2001, Nucleic acids research.

[36]  Y. Kyōgoku,et al.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. , 1999, Genes & development.

[37]  H. Yanagi,et al.  Heat-Induced Synthesis of ς32 inEscherichia coli: Structural and Functional Dissection ofrpoH mRNA Secondary Structure , 1999, Journal of bacteriology.

[38]  H. Hennecke,et al.  A novel DNA element that controls bacterial heat shock gene expression , 1998, Molecular microbiology.

[39]  W. Schumann,et al.  Integrative vector for constructing single-copy translational fusions between regulatory regions of Bacillus subtilis and the bgaB reporter gene encoding a heat-stable beta-galactosidase. , 2006, FEMS microbiology letters.

[40]  R. Hengge-aronis,et al.  The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. , 1996, Genes & development.

[41]  H. Fischer,et al.  Two different mechanisms are involved in the heat‐shock regulation of chaperonin gene expression in Bradyrhizobium japonicum , 1996, Molecular microbiology.

[42]  E. Wagner,et al.  Antisense RNA‐mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing: an in vitro study of plasmid pIP501. , 1994, The EMBO journal.

[43]  J. van Duin,et al.  Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. , 1994, Journal of molecular biology.

[44]  N. Hoe,et al.  Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated , 1993, Journal of bacteriology.

[45]  J. van Duin,et al.  Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Altuvia,et al.  Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. , 1989, Journal of molecular biology.

[47]  C. Gross,et al.  Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32 , 1988, Journal of bacteriology.

[48]  L. Gold,et al.  [27] Extension inhibition analysis of translation initiation complexes☆ , 1988 .

[49]  L. Gold,et al.  Extension inhibition analysis of translation initiation complexes. , 1988, Methods in enzymology.

[50]  R. Pridmore New and versatile cloning vectors with kanamycin-resistance marker. , 1987, Gene.

[51]  H. Okada,et al.  Molecular basis of isozyme formation of beta-galactosidases in Bacillus stearothermophilus: isolation of two beta-galactosidase genes, bgaA and bgaB , 1984, Journal of bacteriology.

[52]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[53]  J. Messing,et al.  Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. , 1983, Gene.

[54]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .