The impact of magnetic fields on cold streams feeding galaxies

High-redshift, massive haloes are observed to have sustained high star formation rates, which require that the amount of cold gas in the halo is continuously replenished. The cooling time-scale for the hot virialized halo gas is too long to provide the source of cold gas. Supersonic, cold streams have been invoked as a mechanism for feeding massive haloes at high redshift and delivering the cold gas required for continued star formation at the rates observed. This mechanism for replenishing the cold gas reservoir is motivated by some cosmological simulations. However, the cold streams are likely to be subject to the supersonic version of the Kelvin–Helmholtz instability (KHI), which eventually leads to stream disruption. Cosmological simulations have yet to obtain the spatial resolution required for understanding the detailed stability properties of cold streams. In this paper, we consider instead an idealized model of magnetized cold streams that we spatially resolve. Using linear theory, we show how magnetic fields with dynamically important field strengths do not inhibit the KHI but rather enhance its growth rate. We perform non-linear simulations of magnetized stream disruption and find that magnetic fields can nevertheless increase stream survival times by suppressing the mixing rate of cold gas with the circumgalactic medium. We find that magnetic fields can allow streams to survive ∼2–8 times longer and, consequently, that streams ∼2–8 times thinner can reach the central galaxy if the magnetic field strength is $\sim 0.3\rm {-}0.8 \, \mu$G.

[1]  T. University,et al.  Detectability of cold streams into high-redshift galaxies by absorption lines , 2012, 1205.2021.

[2]  B. Guiderdoni,et al.  Nearly all the sky is covered by Lyman-α emission around high-redshift galaxies , 2018, Nature.

[3]  Cfa,et al.  The large-scale properties of simulated cosmological magnetic fields , 2015, 1506.00005.

[4]  Nickolay Y. Gnedin,et al.  Computational Eulerian hydrodynamics and Galilean invariance , 2009, 0909.0513.

[5]  J. Silk On the fragmentation of cosmic gas clouds. I. The formation of galaxies and the first generation of stars. , 1977 .

[6]  C. Pfrommer,et al.  On the Kelvin–Helmholtz instability with smooth initial conditions – linear theory and simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[8]  B. Roberts,et al.  Wave propagation in a magnetic cylinder , 1983 .

[9]  R. Walterbos,et al.  CHANG-ES , 2019, Astronomy & Astrophysics.

[10]  M. Vogelsberger,et al.  The physics of multiphase gas flows: fragmentation of a radiatively cooling gas cloud in a hot wind , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  J. Boyd Orthogonal rational functions on a semi-infinite interval , 1987 .

[12]  V. Springel,et al.  First results from the IllustrisTNG simulations: radio haloes and magnetic fields , 2017, Monthly Notices of the Royal Astronomical Society.

[13]  E. Quataert,et al.  Magnetized gas clouds can survive acceleration by a hot wind , 2014, 1409.6719.

[14]  J. Freidberg Ideal MHD by Jeffrey P. Freidberg , 2014 .

[15]  V. Springel,et al.  MAGNETIC FIELDS IN COSMOLOGICAL SIMULATIONS OF DISK GALAXIES , 2013, 1312.2620.

[16]  L. Dursi,et al.  Detecting the orientation of magnetic fields in galaxy clusters - evidence for the magneto-thermal instability , 2009, 0911.2476.

[17]  M. Norman,et al.  Spatial stability of the slab jet. I - Linearized stability analysis. II - Numerical simulations , 1988 .

[18]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[19]  L. Dursi Bubble Wrap for Bullets: The Stability Imparted by a Thin Magnetic Layer , 2007, 0706.3216.

[20]  S. Tsuneta,et al.  PROPERTIES OF MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR PHOTOSPHERE OBTAINED WITH HINODE , 2009, 0907.3025.

[21]  W. H. Reid,et al.  Hydrodynamic Stability: Contents , 2004 .

[22]  L. Zaninetti,et al.  Magnetohydrodynamic Kelvin–Helmholtz instabilities in astrophysics – II. Cylindrical boundary layer in vortex sheet approximation , 1981 .

[23]  B. Roberts,et al.  Wave propagation in a magnetically structured atmosphere , 1982 .

[24]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[25]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[26]  A. Dekel,et al.  Instability of supersonic cold streams feeding galaxies – I. Linear Kelvin–Helmholtz instability with body modes , 2016, 1606.06289.

[27]  Molly S. Peeples,et al.  Figuring Out Gas & Galaxies in Enzo (FOGGIE). I. Resolving Simulated Circumgalactic Absorption at 2 ≤ z ≤ 2.5 , 2018, The Astrophysical Journal.

[28]  Molly S. Peeples,et al.  The Circumgalactic Medium , 2017, 1709.09180.

[29]  Jin-lin Han,et al.  Observing Interstellar and Intergalactic Magnetic Fields , 2017 .

[30]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[31]  A. Loeb,et al.  Lyα blobs as an observational signature of cold accretion streams into galaxies , 2009, 0902.2999.

[32]  J. Ostriker,et al.  Theoretical Challenges in Galaxy Formation , 2016, 1612.06891.

[33]  V. Springel,et al.  GALACTIC WINDS DRIVEN BY ISOTROPIC AND ANISOTROPIC COSMIC-RAY DIFFUSION IN DISK GALAXIES , 2016, 1605.00643.

[34]  Federico Marinacci,et al.  Magnetic field formation in the Milky Way like disc galaxies of the Auriga project , 2017, 1701.07028.

[35]  O. Wucknitz,et al.  Detection of microgauss coherent magnetic fields in a galaxy five billion years ago , 2017, 1708.07844.

[36]  Devin W. Silvia,et al.  The Impact of Enhanced Halo Resolution on the Simulated Circumgalactic Medium , 2018, The Astrophysical Journal.

[37]  R. Teyssier,et al.  A small-scale dynamo in feedback-dominated galaxies - II. The saturation phase and the final magnetic configuration , 2017, 1704.05845.

[38]  J. Schaye,et al.  Cold accretion flows and the nature of high column density H I absorption at redshift 3 , 2011, 1109.5700.

[39]  C. D. Vecchia,et al.  Simulations of Magnetic Fields in Filaments , 2005 .

[40]  R. Teyssier,et al.  A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields – I. The kinematic phase , 2015, Monthly Notices of the Royal Astronomical Society.

[41]  R. Durrer,et al.  Cosmological magnetic fields: their generation, evolution and observation , 2013 .

[42]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[43]  A. Dekel,et al.  Instability of supersonic cold streams feeding Galaxies – III. Kelvin–Helmholtz instability in three dimensions , 2018, Monthly Notices of the Royal Astronomical Society.

[44]  V. Springel,et al.  Cosmological simulations of the circumgalactic medium with 1 kpc resolution: enhanced H i column densities , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[45]  Federico Marinacci,et al.  Faraday rotation maps of disc galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  V. Pilipenko,et al.  MHD waveguides in space plasma , 2010 .

[47]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[48]  S. Blex,et al.  CHANG-ES XII , 2018, Astronomy & Astrophysics.

[49]  A. Dekel,et al.  Instability of supersonic cold streams feeding galaxies–II. Non-linear evolution of surface and body modes of Kelvin–Helmholtz instability , 2018, 1803.09105.

[50]  E. Quataert,et al.  A validated non-linear Kelvin-Helmholtz benchmark for numerical hydrodynamics , 2015, 1509.03630.

[51]  H. Spruit,et al.  Semiconvection: numerical simulations , 2013, 1303.4522.

[52]  M. Rees,et al.  Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .

[53]  L. Dursi,et al.  Draping of Cluster Magnetic Fields over Bullets and Bubbles—Morphology and Dynamic Effects , 2007, 0711.0213.

[54]  D. Ceverino,et al.  Inflow velocities of cold flows streaming into massive galaxies at high redshifts , 2015, 1501.06913.

[55]  D. G. Payne,et al.  The stability of confined radio jets - The role of reflection modes , 1985 .

[56]  V. Springel,et al.  First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[57]  A. Dekel,et al.  Kelvin–Helmholtz instability in self-gravitating streams , 2019, Monthly Notices of the Royal Astronomical Society.

[58]  James M. Stone,et al.  AN EXTENSION OF THE ATHENA++ CODE FRAMEWORK FOR GRMHD BASED ON ADVANCED RIEMANN SOLVERS AND STAGGERED-MESH CONSTRAINED TRANSPORT , 2015, 1511.00943.

[59]  Klaus Dolag,et al.  Origin of strong magnetic fields in Milky Way-like galactic haloes , 2012, 1202.3349.

[60]  S. Oh,et al.  The Impact of Magnetic Fields on Thermal Instability , 2017, 1710.00822.

[61]  Peng Wang,et al.  MAGNETOHYDRODYNAMIC SIMULATIONS OF DISK GALAXY FORMATION: THE MAGNETIZATION OF THE COLD AND WARM MEDIUM , 2007, 0712.0872.

[62]  C. Gheller,et al.  Forecasts for the detection of the magnetised cosmic web from cosmological simulations , 2015, 1503.08983.

[63]  Ryan M. O'Leary,et al.  A characteristic scale for cold gas , 2016, 1610.01164.

[64]  Zuyin Pu,et al.  Kelvin:Helmholtz Instability at the magnetopause: Solution for compressible plasmas , 1983 .

[65]  R. Abuter,et al.  SINFONI Integral Field Spectroscopy of z ~ 2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution , 2006, astro-ph/0603559.

[66]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[67]  Jun Zou,et al.  In-tank, on-shot characterization of the OMEGA laser system focal spot , 2019, LASE.

[68]  M. Norman,et al.  Spatial stability of the magnetized slab jet , 1992 .

[69]  H. Spruit Essential Magnetohydrodynamics for Astrophysics , 2013, 1301.5572.

[70]  Richard S. Ellis,et al.  The formation and assembly of a typical star-forming galaxy at redshift z ≈ 3 , 2008, Nature.

[71]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[72]  J. Suresh,et al.  Zooming in on accretion – II. Cold circumgalactic gas simulated with a super-Lagrangian refinement scheme , 2018, Monthly Notices of the Royal Astronomical Society.

[73]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[74]  R. Teyssier,et al.  A small-scale dynamo in feedback-dominated galaxies – III. Cosmological simulations , 2017, 1708.01486.

[75]  V. Heesen,et al.  Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER , 2018, 1801.05211.

[76]  K. Dolag,et al.  Strong magnetic fields and large rotation measures in protogalaxies from supernova seeding , 2013, 1308.3440.

[77]  J. Boyd Spectral methods using rational basis functions on an infinite interval , 1987 .

[78]  K. Subramanian From Primordial Seed Magnetic Fields to the Galactic Dynamo , 2019, Galaxies.

[79]  R. Klessen,et al.  Magnetic Field Amplification in Young Galaxies , 2013, 1310.0853.

[80]  S Chandrasekhar,et al.  THE GEODESICS IN GODEL'S UNIVERSE. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[81]  P. Dayal Early galaxy formation and its large-scale effects , 2018, Proceedings of the International Astronomical Union.

[82]  M. M. Rajan,et al.  Periodic oscillations and nonlinear tunneling of soliton for Hirota-MB equation in inhomogeneous fiber , 2019, Optik.

[83]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[84]  R. Rosner,et al.  On the Stability of Magnetized Rotating Jets: The Nonaxisymmetric Modes , 1989 .

[85]  U. Diego,et al.  Moving mesh cosmology: tracing cosmological gas accretion , 2013, 1301.6753.

[86]  Ulrich P. Steinwandel,et al.  Magnetic buoyancy in simulated galactic discs with a realistic circumgalactic medium , 2018, Monthly Notices of the Royal Astronomical Society.

[87]  C. McNally,et al.  A WELL-POSED KELVIN–HELMHOLTZ INSTABILITY TEST AND COMPARISON , 2011, 1111.1764.

[88]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.