Polymer Hydrogel Microelectrodes for Neural Communication

[1]  C. Kufta,et al.  Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. , 1996, Brain : a journal of neurology.

[2]  Olle Inganäs,et al.  Patterning of Polymer Light‐Emitting Diodes with Soft Lithography , 2000 .

[3]  L L Hench,et al.  An in vitro and in vivo analysis of anodized tantalum capacitive electrodes: corrosion response, physiology, and histology. , 1977, Journal of biomedical materials research.

[4]  G. Lundborg,et al.  Rat sciatic nerve regeneration through a micromachined silicon chip. , 1997, Biomaterials.

[5]  A. Kawana,et al.  Simultaneous measurement of intracellular calcium and electrical activity from patterned neural networks in culture , 1993, IEEE Transactions on Biomedical Engineering.

[6]  S. B. Brummer,et al.  Electrical Stimulation with Pt Electrodes: II-Estimation of Maximum Surface Redox (Theoretical Non-Gassing) Limits , 1977, IEEE Transactions on Biomedical Engineering.

[7]  D L Guyton,et al.  Capacitor Electrode Stimulates Nerve or Muscle without Oxidation-Reduction Reactions , 1973, Science.

[8]  D. Durand,et al.  Modeling the effects of electric fields on nerve fibers: Determination of excitation thresholds , 1992, IEEE Transactions on Biomedical Engineering.

[9]  P. Fromherz,et al.  Neuron-Silicon Self-Excitation: A Prototype of Iono-Electronics , 2001 .

[10]  G. Kovacs,et al.  Regeneration microelectrode array for peripheral nerve recording and stimulation , 1992, IEEE Transactions on Biomedical Engineering.

[11]  Thomas Stieglitz,et al.  A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves , 1997 .

[12]  K. Najafi,et al.  Long term chronic recordings from peripheral sensory fibers using a sieve electrode array , 1997, Journal of Neuroscience Methods.

[13]  A. Mauro Capacity Electrode for Chronic Stimulation , 1960, Science.

[14]  O. Inganäs,et al.  Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors , 1999 .

[15]  T Laurell,et al.  The geometric design of micromachined silicon sieve electrodes influences functional nerve regeneration. , 2001, Biomaterials.

[16]  R. Stein,et al.  Stable long-term recordings from cat peripheral nerves , 1977, Brain Research.

[17]  O. Inganäs,et al.  Electrochemical Characterization of Poly(3,4‐ethylene dioxythiophene) Based Conducting Hydrogel Networks , 2000 .

[18]  T. Nyberg,et al.  Sorting of Regenerating Rat Sciatic Nerve Fibers with Target-Derived Molecules , 2001, Experimental Neurology.

[19]  S. B. Brummer,et al.  Activated Ir: An Electrode Suitable for Reversible Charge Injection in Saline Solution , 1983 .

[20]  W.L.C. Rutten,et al.  Sensitivity and selectivity of intraneural stimulation using a silicon electrode array , 1991, IEEE Transactions on Biomedical Engineering.

[21]  C. Schmidt,et al.  Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. , 2001, Biomaterials.

[22]  K. Najafi,et al.  A micromachined silicon sieve electrode for nerve regeneration applications , 1994, IEEE Transactions on Biomedical Engineering.

[23]  L. Wallman,et al.  Perforated silicon nerve chips with doped registration electrodes: in vitro performance and in vivo operation , 1999, IEEE Transactions on Biomedical Engineering.

[24]  D. Mcneal Analysis of a Model for Excitation of Myelinated Nerve , 1976, IEEE Transactions on Biomedical Engineering.