Hybridizing Meta-RaPS with Machine Learning Algorithms

Merging a metaheuristic with machine learning algorithms is typically done to improve the machine learning algorithms. This work, however, takes the reverse approach and aims at utilizing machine learning algorithms to improve metaheuristics. The objective of this research is to demonstrate an effective approach to hybridize metaheuristics with machine learning. The metaheuristic of choice is Metaheuristic for Randomized Priority Search (Meta-RaPS) and the machine learning algorithms are Decision Trees (supervised learning) and Association Rules (unsupervised learning). Demonstrating the performance of the algorithms is done by solving the Vehicle Routing Problem (VRP). This paper starts by describing the Vehicle Routing Problem and then subsequent sections discuss the algorithms used and the computational experiments executed.

[1]  Melissa D. Goodman,et al.  A grasp-knapsack hybrid for a nurse-scheduling problem , 2009, J. Heuristics.

[2]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[3]  Reinaldo J. Moraga Meta-raps : an effective approach for combinatorial problems , 2002 .

[4]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[5]  Stefan Lessmann,et al.  Tuning metaheuristics: A data mining based approach for particle swarm optimization , 2011, Expert Syst. Appl..

[6]  A. L. Arcus,et al.  COMSOAL: a computer method of sequencing operations for assembly lines , 1965 .

[7]  George B. Dantzig,et al.  The Truck Dispatching Problem , 1959 .

[8]  El-Ghazali Talbi,et al.  Using Datamining Techniques to Help Metaheuristics: A Short Survey , 2006, Hybrid Metaheuristics.

[9]  Arif Arin,et al.  Incorporating Memory and Learning Mechanisms Into Meta-RaPS , 2012 .

[10]  Reinaldo J. Moraga,et al.  Meta-RaPS approach for the 0-1 Multidimensional Knapsack Problem , 2005, Comput. Ind. Eng..

[11]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[12]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[13]  Nubia Velasco,et al.  A GRASP with evolutionary path relinking for the truck and trailer routing problem , 2011, Comput. Oper. Res..

[14]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[15]  Reinaldo J. Moraga,et al.  A Meta-RaPS for the early/tardy single machine scheduling problem , 2009 .

[16]  Gilbert Laporte,et al.  The vehicle routing problem: An overview of exact and approximate algorithms , 1992 .

[17]  Alex Alves Freitas,et al.  A Hybrid Data Mining Metaheuristic for the p-Median Problem , 2009, SDM.

[18]  Nicos Christofides,et al.  The vehicle routing problem , 1976, Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle.

[19]  Paolo Toth,et al.  The Vehicle Routing Problem , 2002, SIAM monographs on discrete mathematics and applications.

[20]  J. F. Pierce,et al.  ON THE TRUCK DISPATCHING PROBLEM , 1971 .

[21]  Alexandre Plastino,et al.  Hybridization of GRASP Metaheuristic with Data Mining Techniques , 2006, J. Math. Model. Algorithms.

[22]  Alexandre Plastino,et al.  A Hybrid GRASP with Data Mining for the Maximum Diversity Problem , 2005, Hybrid Metaheuristics.

[23]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[24]  Das Amrita,et al.  Mining Association Rules between Sets of Items in Large Databases , 2013 .

[25]  Reinaldo J. Moraga,et al.  Meta-RaPS: a simple and effective approach for solving the traveling salesman problem , 2005 .

[26]  Gail W. DePuy,et al.  A simple and effective heuristic for the resource constrained project scheduling problem , 2001 .

[27]  Luca Maria Gambardella,et al.  Adaptive memory programming: A unified view of metaheuristics , 1998, Eur. J. Oper. Res..

[28]  Jacques Teghem Metaheuristics. From Design to Implementation, El-Ghazali Talbi. John Wiley & Sons Inc. (2009). XXI + 593 pp., Publication 978-0-470-27858-1 , 2010, Eur. J. Oper. Res..

[29]  Ziauddin Ursani Localized genetic algorithm for the vehicle routing problem , 2009 .

[30]  Gail W. DePuy,et al.  Applying the COMSOAL computer heuristic to the constrained resource allocation problem , 2000 .

[31]  Lúcia Maria de A. Drummond,et al.  Combining an evolutionary algorithm with data mining to solve a single-vehicle routing problem , 2006, Neurocomputing.

[32]  T. Feo,et al.  Greedy Randomized Adaptive Search Procedures , 1995, Handbook of Metaheuristics.

[33]  Abdul Aziz Baig Mirza Improved Meta-RaPS approach with learning concepts for solving capacitated vehicle routing problem , 2011 .

[34]  Guanghui Lan,et al.  An effective and simple heuristic for the set covering problem , 2007, Eur. J. Oper. Res..

[35]  Ghaith Rabadi,et al.  Heuristics for the Unrelated Parallel Machine Scheduling Problem with Setup Times , 2006, J. Intell. Manuf..