Organic electronic devices and their functional interfaces.

A most appealing feature of the development of (opto)electronic devices based on conjugated organic materials is the highly visible link between fundamental research and technological advances. Improved understanding of organic material properties can often instantly be implemented in novel device architectures, which results in rapid progress in the performance and functionality of devices. An essential ingredient for this success is the strong interdisciplinary nature of the field of organic electronics, which brings together experts in chemistry, physics, and engineering, thus softening or even removing traditional boundaries between the disciplines. Naturally, a thorough comprehension of all properties of organic insulators, semiconductors, and conductors is the goal of current efforts. Furthermore, interfaces between dissimilar materials-organic/organic and organic/inorganic-are inherent in organic electronic devices. It has been recognized that these interfaces are a key for device function and efficiency, and detailed investigations of interface physics and chemistry are at the focus of research. Ultimately, a comprehensive understanding of phenomena at interfaces with organic materials will improve the rational design of highly functional organic electronic devices.

[1]  A. Kahn,et al.  Controlling the work function of indium tin oxide: differentiating dipolar from local surface effects. , 2002, Journal of the American Chemical Society.

[2]  Yongli Gao,et al.  Photoemission spectroscopic investigation on the interface formation of a ladder-type poly(para-phenylene) with aluminum , 2000 .

[3]  Donal D. C. Bradley,et al.  The photovoltaic response in poly(p-phenylene vinylene) thin-film devices , 1994 .

[4]  T. Marks,et al.  High‐Brightness Blue Light‐Emitting Polymer Diodes via Anode Modification Using a Self‐Assembled Monolayer , 2003 .

[5]  Barbara Stadlober,et al.  Growth model of pentacene on inorganic and organic dielectrics based on scaling and rate-equation theory , 2006 .

[6]  J. Pflaum,et al.  Effect of Molecular Weight and Annealing of Poly(3‐hexylthiophene)s on the Performance of Organic Field‐Effect Transistors , 2004 .

[7]  C. Frisbie,et al.  Structural and Electrostatic Complexity at a Pentacene/Insulator Interface , 2006 .

[8]  G. Horowitz,et al.  An analytical model for the organic field-effect transistor in the depletion mode. Application to sexithiophene films and single crystals , 1998 .

[9]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[10]  W. R. Salaneck,et al.  Electronic structure of poly(9,9-dioctylfluorene) in the pristine and reduced state , 2002 .

[11]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[12]  B. Ju,et al.  An organic thin-film transistor of high mobility by dielectric surface modification with organic molecule , 2004 .

[13]  R. Friend,et al.  Trap-assisted hole injection and quantum efficiency enhancement in poly(9,9′ dioctylfluorene-alt-benzothiadiazole) polymer light-emitting diodes , 2004 .

[14]  M. J. Brett,et al.  Chiral sculptured thin films , 1996, Nature.

[15]  J. Pflaum,et al.  Radiotracer measurements as a sensitive tool for the detection of metal penetration in molecular-based organic electronics , 2005 .

[16]  Joseph Shinar,et al.  Localized triplet excitations and the effect of photo-oxidation in ladder-type poly(p-phenylene) and oligo(p-phenylene) , 2000 .

[17]  K. Leo,et al.  Controlled n-type doping of a molecular organic semiconductor: Naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) , 2000 .

[18]  Egbert Zojer,et al.  UV∕ozone treated Au for air-stable, low hole injection barrier electrodes in organic electronics , 2006 .

[19]  Antje Vollmer,et al.  Optimized hole injection with strong electron acceptors at organic-metal interfaces. , 2005, Physical review letters.

[20]  Richard H. Friend,et al.  Electronic structure of conjugated polymers: consequences of electron}lattice coupling , 1999 .

[21]  Martin R. Willis,et al.  Organic electroluminescent devices: enhanced carrier injection using SAM derivatized ITO electrodes , 2000 .

[22]  Stephen R. Forrest,et al.  EXCITONIC SINGLET-TRIPLET RATIO IN A SEMICONDUCTING ORGANIC THIN FILM , 1999 .

[23]  William R. Salaneck,et al.  The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films , 2003 .

[24]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[25]  Jean-Luc Brédas,et al.  Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors , 2004 .

[26]  D. Zahn,et al.  Energy band dispersion in well ordered N ,N ' -dimethyl-3,4,9,10-perylenetetracarboxylic diimide films , 2004 .

[27]  Stephen R. Forrest,et al.  A low drive voltage, transparent, metal-free n-i-p electrophosphorescent light emitting diode , 2003 .

[28]  Brédas,et al.  Theoretical and experimental studies of the interaction between sodium and oligothiophenes. , 1996, Physical review. B, Condensed matter.

[29]  Martin R. Willis,et al.  Organic electroluminescent devices: enhanced carrier injection using an organosilane self assembled monolayer (SAM) derivatized ITO electrode , 2001 .

[30]  Bernard Kippelen,et al.  A comprehensive study of short channel effects in organic field-effect transistors , 2006 .

[31]  Chongfei Shen,et al.  Organometallic Chemistry at the Magnesium- Tris(8-hydroxyquinolino)aluminum Interface , 2000 .

[32]  K. Seki,et al.  Photoemission studies of functional organic materials and their interfaces , 1998 .

[33]  Heinz von Seggern,et al.  Light-emitting field-effect transistor based on a tetracene thin film. , 2003, Physical review letters.

[34]  Wen-Sheng Wang,et al.  Enhanced Light Out-Coupling Efficiency of Organic Light-Emitting Diodes with Self-Organized Microlens Arrays , 2006 .

[35]  C. Wöll,et al.  The interaction of C6H6 and C6H12 with noble metal surfaces: electronic level alignment and the origin of the interface dipole. , 2005, The Journal of chemical physics.

[36]  Junbiao Peng,et al.  All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors , 2005 .

[37]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[38]  Gregor Schwartz,et al.  Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions , 2006 .

[39]  C. C. Wu,et al.  Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices , 1997 .

[40]  Tobin J Marks,et al.  Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. , 2006, Journal of the American Chemical Society.

[41]  Oana D. Jurchescu,et al.  Electronic transport properties of pentacene single crystals upon exposure to air , 2005 .

[42]  Antoine Kahn,et al.  Impact of electrode contamination on the α-NPD/Au hole injection barrier , 2005 .

[43]  Eung-Gun Kim,et al.  Molecular n‐Type Doping of 1,4,5,8‐Naphthalene Tetracarboxylic Dianhydride by Pyronin B Studied Using Direct and Inverse Photoelectron Spectroscopies , 2006 .

[44]  Jianyong Ouyang,et al.  Nonvolatile electrical bistability of organic/metal-nanocluster/organic system , 2003 .

[45]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[46]  J. Brédas,et al.  Shallow trap states in pentacene thin films from molecular sliding , 2005 .

[47]  W. Schirmer,et al.  Introduction to Surface Chemistry and Catalysis , 1995 .

[48]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[49]  William R. Salaneck,et al.  An experimental study of poly(9,9-dioctyl-fluorene) and its interfaces with Al, LiF and CsF , 2000 .

[50]  Klaus Meerholz,et al.  Highly Efficient Polymeric Electrophosphorescent Diodes , 2006 .

[51]  Tobin J. Marks,et al.  A polymer blend approach to fabricating the hole transport layer for polymer light-emitting diodes , 2004 .

[52]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[53]  N. Koch,et al.  Weak charge transfer between an acceptor molecule and metal surfaces enabling organic/metal energy level tuning. , 2006, The journal of physical chemistry. B.

[54]  Norbert Koch,et al.  Molecular orientation dependent energy levels at interfaces with pentacene and pentacenequinone , 2006 .

[55]  Kazuhiko Seki,et al.  p-Sexiphenyl/metal interfaces studied by photoemission and metastable atom electron spectroscopy , 1999 .

[56]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[57]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals and Polymers , 1999 .

[58]  G. Scoles,et al.  Pentacene ultrathin film formation on reduced and oxidized Si surfaces , 2003 .

[59]  W. R. Salaneck,et al.  Interfacial chemistry of Alq3 and LiF with reactive metals , 2001 .

[60]  David Cahen,et al.  Electron Energetics at Surfaces and Interfaces: Concepts and Experiments , 2003 .

[61]  N. Koch,et al.  Evidence for temperature-dependent electron band dispersion in pentacene. , 2006, Physical review letters.

[62]  O. Inganäs,et al.  Design, Synthesis and Properties of Low Band Gap Polyfluorenes for Photovoltaic Devices , 2005 .

[63]  P. Magnante,et al.  Electroluminescence in Organic Crystals , 1963 .

[64]  Stephen R. Forrest,et al.  Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography , 2006 .

[65]  C. Wöll,et al.  Exchangelike effects for closed-shell adsorbates: interface dipole and work function. , 2002, Physical review letters.

[66]  J. Brédas,et al.  Evidence for Physisorption of Aluminum on the Surface of Electroluminescent Sexiphenyl , 1998 .

[67]  E. List,et al.  Intrinsic room-temperature electrophosphorescence from a pi-conjugated polymer. , 2002, Physical review letters.

[68]  A. C. Dürr,et al.  Interplay between morphology, structure, and electronic properties at diindenoperylene-gold interfaces , 2003 .

[69]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[70]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[71]  Michael J. Brett,et al.  Highly Ordered Organic Alq3 Chiral Luminescent Thin Films Fabricated by Glancing‐Angle Deposition , 2006 .

[72]  Yongli Gao,et al.  Importance of indium tin oxide surface acido basicity for charge injection into organic materials based light emitting diodes , 2000 .

[73]  Ingolf V. Hertel,et al.  Photoemission from Azobenzene Alkanethiol Self-Assembled Monolayers , 2003 .

[74]  Chongfei Shen,et al.  Role of Electrode Contamination in Electron Injection at Mg:Ag/Alq3 Interfaces , 1999 .

[75]  A. Kahn,et al.  Energy level alignment at interfaces of organic semiconductor heterostructures , 1998 .

[76]  Y. Yamashita,et al.  High performance n- and p-type field-effect transistors based on tetrathiafulvalene derivatives. , 2006, Journal of the American Chemical Society.

[77]  A. Kahn,et al.  Lack of thermodynamic equilibrium in conjugated organic molecular thin films , 2003 .

[78]  Xiang Zhou,et al.  Controlled p-type doping of polycrystalline and amorphous organic layers: Self-consistent description of conductivity and field-effect mobility by a microscopic percolation model , 2001 .

[79]  William R. Salaneck,et al.  Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy , 1999 .

[80]  Fernando Flores,et al.  Doping-induced realignment of molecular levels at organic–organic heterojunctions , 2006 .

[81]  R. Smoluchowski Anisotropy of the Electronic Work Function of Metals , 1941 .

[82]  Antoine Kahn,et al.  Molecular level alignment at organic semiconductor-metal interfaces , 1998 .

[83]  Oana D. Jurchescu,et al.  Effect of impurities on the mobility of single crystal pentacene , 2004, cond-mat/0404130.

[84]  Stephen R. Forrest,et al.  Excitons in crystalline thin films of 3,4,9,10-perylenetetracarboxylic dianhydride studied by photocurrent response , 1995 .

[85]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[86]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[87]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[88]  G. A. Chamberlain,et al.  ORGANIC SOLAR CELLS: A REVIEW , 1983 .

[89]  Mo Zhu,et al.  Depletion-mode n-channel organic field-effect transistors based on NTCDA , 2003 .

[90]  S. Möller,et al.  A polymer/semiconductor write-once read-many-times memory , 2003, Nature.

[91]  Carlos Silva,et al.  Exciton regeneration at polymeric semiconductor heterojunctions. , 2004, Physical review letters.

[92]  Andrew J. deMello,et al.  Role of electron injection in polyfluorene-based light emitting diodes containing PEDOT:PSS , 2005 .

[93]  Y. Ouchi,et al.  Electronic structure of Alq3/LiF/Al interfaces studied by UV photoemission , 1999 .

[94]  E. List,et al.  Low-onset organic blue light emitting devices obtained by better interface control , 1999 .

[95]  R. Jones,et al.  Controlling the Surface Composition of Poly(3,4‐ethylene dioxythiophene)–Poly(styrene sulfonate) Blends by Heat Treatment , 2004 .

[96]  Qibing Pei,et al.  Efficient blue polymer light‐emitting diodes from a series of soluble poly(paraphenylene)s , 1996 .

[97]  Kazuhiro Kudo,et al.  Organic light emitting transistors , 2005 .

[98]  Shui-Tong Lee,et al.  Chemical bonding and electronic structures at magnesium/copper phthalocyanine interfaces , 2006 .

[99]  J. Verhoeven,et al.  Glossary of terms used in photochemistry (IUPAC Recommendations 1996) , 1996 .

[100]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[101]  W. R. Salaneck,et al.  Chemisorption of acrylonitrile on the Cu(100) surface: A local density functional study , 1999 .

[102]  N. Koch,et al.  The Effect of Fluorination on Pentacene/Gold Interface Energetics and Charge Reorganization Energy , 2007 .

[103]  W. R. Salaneck,et al.  Experimental and theoretical studies of the electronic structure of Na-doped poly (para-phenylenevinylene) , 1993 .

[104]  Stephen R. Forrest,et al.  Electrophosphorescent p–i–n Organic Light‐Emitting Devices for Very‐High‐Efficiency Flat‐Panel Displays , 2002 .

[105]  T. Shimoda,et al.  Control of carrier density by self-assembled monolayers in organic field-effect transistors , 2004, Nature materials.

[106]  Gilles Horowitz,et al.  High‐Performance Ambipolar Pentacene Organic Field‐Effect Transistors on Poly(vinyl alcohol) Organic Gate Dielectric , 2005 .

[107]  K. Yanagisawa,et al.  Pentacene transistor encapsulated by poly-para-xylylene behaving as gate dielectric insulator and passivation film , 2005 .

[108]  N. Koch,et al.  Electrode-molecular semiconductor contacts: Work-function-dependent hole injection barriers versus Fermi-level pinning , 2006 .

[109]  Eric W. Forsythe,et al.  Interface formation between NPB and processed indium tin oxide , 2000 .

[110]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[111]  Masamichi Fujihira,et al.  Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices , 2001 .

[112]  K. Seki,et al.  Energy level alignment at organic/metal interfaces studied by UV photoemission: breakdown of traditional assumption of a common vacuum level at the interface , 1997 .

[113]  D. Milliron,et al.  Surface oxidation activates indium tin oxide for hole injection , 2000 .

[114]  Richard L. Martin,et al.  CONTROLLING CHARGE INJECTION IN ORGANIC ELECTRONIC DEVICES USING SELF-ASSEMBLED MONOLAYERS , 1997 .

[115]  Karl Leo,et al.  Pyronin B as a donor for n-type doping of organic thin films , 2003 .

[116]  T. Matsushima,et al.  Extremely low voltage organic light-emitting diodes with p-doped alpha-sexithiophene hole transport and n-doped phenyldipyrenylphosphine oxide electron transport layers , 2006 .

[117]  Ramsey,et al.  Soliton pair charge storage in doped polyene molecules: Evidence from photoelectron spectroscopy studies. , 1993, Physical Review Letters.

[118]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[119]  F. Netzer,et al.  The Electronic Structure of Alkali Doped Ultra Thin Sexiphenyl Films , 1994 .

[120]  A. Kahn,et al.  Chemical and electrical properties of interfaces between magnesium and aluminum and tris-(8-hydroxy quinoline) aluminum , 2001 .

[121]  S. Ramasesha,et al.  Formation cross-sections of singlet and triplet excitons in π-conjugated polymers , 2001, Nature.

[122]  Antje Vollmer,et al.  Influence of water on the work function of conducting poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) , 2007 .

[123]  A. Kahn,et al.  Electrical doping: the impact on interfaces of π-conjugated molecular films , 2003 .

[124]  Combined photoemission/in vacuo transport study of the indium tin oxide/copper phthalocyanine/N,N′-diphenyl-N,N′-bis(l-naphthyl)-1,1′biphenyl-4,4″diamine molecular organic semiconductor system , 1999 .

[125]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[126]  F. Schreiber Organic Molecular Beam Deposition: Growth Studies beyond the First Monolayer , 2004 .

[127]  A. Jen,et al.  Red-emitting electroluminescent devices based on osmium-complexes-doped blend of poly(vinylnaphthalene) and 1,3,4-oxadiazole derivative , 2002 .

[128]  Ullrich Scherf,et al.  Spin-conserving carrier recombination in conjugated polymers , 2005, Nature materials.

[129]  A. Kahn,et al.  Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects , 2002 .

[130]  A. Elschner,et al.  Green polyfluorene-conducting polymer interfaces: Energy level alignment and device performance , 2006 .

[131]  Stephen R. Forrest,et al.  A metal-free cathode for organic semiconductor devices , 1998 .

[132]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[133]  Paul S. Bagus,et al.  Vacuum level alignment at organic/metal junctions: “Cushion” effect and the interface dipole , 2005 .

[134]  G. Scoles,et al.  Hyperthermal molecular beam deposition of highly ordered organic thin films. , 2003, Physical review letters.

[135]  Y. Ouchi,et al.  Electronic structure of 8-hydroxyquinoline aluminum (alq3)/metal interfaces studied by UV photoemission , 1997 .

[136]  N. Koch,et al.  Bipolaron formation in para-sexiphenyl thin films upon Cs doping , 2000 .

[137]  Robert A Norwood,et al.  CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES 3202 Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study , 1998 .

[138]  E. Umbach,et al.  A combined photoelectron spectroscopy and capacity–voltage investigation of the aluminum/oligothiophene interface , 1999 .

[139]  Kris Myny,et al.  Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags , 2006 .

[140]  A. C. Dürr,et al.  Optically induced electron transfer from conjugated organic molecules to charged metal clusters , 2003 .

[141]  Sangyoon Lee,et al.  Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance , 2006 .

[142]  H. Sandberg,et al.  Utilizing roll-to-roll techniques for manufacturing source-drain electrodes for all-polymer transistors , 2005 .

[143]  Piero Cosseddu,et al.  Towards the textile transistor : Assembly and characterization of an organic field effect transistor with a cylindrical geometry , 2006 .

[144]  Antoine Kahn,et al.  Effect of electrical doping on molecular level alignment at organic–organic heterojunctions , 2003 .

[145]  Fabio Biscarini,et al.  Spatially correlated charge transport in organic thin film transistors. , 2004, Physical review letters.

[146]  Martin Pfeiffer,et al.  LOW VOLTAGE ORGANIC LIGHT EMITTING DIODES FEATURING DOPED PHTHALOCYANINE AS HOLE TRANSPORT MATERIAL , 1998 .

[147]  Donal D. C. Bradley,et al.  Ohmic hole injection in poly(9,9-dioctylfluorene) polymer light-emitting diodes , 2003 .

[148]  S. Barlow,et al.  N-type doping of an electron-transport material by controlled gas-phase incorporation of cobaltocene , 2006 .

[149]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[150]  J. Brédas,et al.  Interface energetics and level alignment at covalent metal-molecule junctions: pi-conjugated thiols on gold. , 2006, Physical review letters.

[151]  Norbert Koch,et al.  Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films , 2003 .

[152]  A. Kahn,et al.  Molecular‐Level Offset at the PTCDA/Alq3 Heterojunction , 1998 .

[153]  David J. Giesen,et al.  Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces , 2000 .

[154]  G. Pourtois,et al.  The influence of the counterion on the electronic structure in doped phenylene-based materials , 2000 .

[155]  Mats Andersson,et al.  High‐Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative , 2003 .

[156]  A. Kahn,et al.  Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethane , 2003 .

[157]  Growth of aromatic molecules on solid substrates for applications in organic electronics , 2004 .

[158]  I. Hill,et al.  Improved organic thin-film transistor performance using novel self-assembled monolayers , 2006 .

[159]  William R. Salaneck,et al.  Fermi-level pinning at conjugated polymer interfaces , 2006 .

[160]  Ullrich Scherf,et al.  Semiconducting Polyfluorenes—Towards Reliable Structure–Property Relationships , 2002 .

[161]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[162]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[163]  Karsten Walzer,et al.  Ultrastable and efficient red organic light emitting diodes with doped transport layers , 2006 .

[164]  N. Koch,et al.  Bipolaron: The Stable Charged Species in n-Doped p-Sexiphenyl , 2000 .

[165]  W. R. Salaneck,et al.  Electrochemical and XPS studies toward the role of monomeric and polymeric sulfonate counterions in the synthesis, composition, and properties of poly(3,4-ethylenedioxythiophene) , 2003 .

[166]  A. Monkman,et al.  Direct measurement of the singlet generation yield in polymer light-emitting diodes. , 2006, Physical Review Letters.

[167]  Norbert Koch,et al.  Controlling the early stages of pentacene growth by supersonic molecular beam deposition. , 2007, Physical review letters.

[168]  Shui-Tong Lee,et al.  Energy level alignment at Alq/metal interfaces , 1998 .

[169]  Ramsey,et al.  Explicit evidence for bipolaron formation: Cs-doped biphenyl. , 1990, Physical review. B, Condensed matter.

[170]  M. Knupfer,et al.  Interface properties of organic/indium–tin oxide and organic/GeS(001) studied using photoemission spectroscopy , 2000 .

[171]  W. R. Salaneck,et al.  Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: A mini-review and some new results , 2001 .

[172]  Franco Cacialli,et al.  Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance , 1998 .

[173]  N. Koch,et al.  Tuning the hole injection barrier height at organic/metal interfaces with (sub-) monolayers of electron acceptor molecules , 2005 .

[174]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[175]  Markus S. Gross,et al.  Efficient blue organic light-emitting diodes with graded hole-transport layers. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[176]  Y. Yamashita,et al.  Intermolecular energy-band dispersion in oriented thin films of bis(1,2,5-thiadiazolo)-p-quinobis(1,3-dithiole) by angle-resolved photoemission , 1994 .

[177]  Ching Wan Tang,et al.  Photovoltaic effects of metal–chlorophyll‐a–metal sandwich cells , 1975 .

[178]  S. Karg,et al.  Polymeric anodes for organic light-emitting diodes , 1997 .

[179]  Antoine Kahn,et al.  Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study , 2001 .

[180]  J. Ouyang,et al.  Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices , 2006 .

[181]  G. Malliaras,et al.  Using atomic steps to induce texture in polycrystalline pentacene films , 2006 .

[182]  Friedrich-Karl Bruder,et al.  PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes , 2000 .

[183]  G Leising,et al.  Polyfluorenes with polyphenylene dendron side chains: toward non-aggregating, light-emitting polymers. , 2001, Journal of the American Chemical Society.

[184]  W. R. Salaneck,et al.  Transition between energy level alignment regimes at a low band gap polymer-electrode interfaces , 2006 .

[185]  Nasser N Peyghambarian,et al.  Application of Screen Printing in the Fabrication of Organic Light‐Emitting Devices , 2000 .

[186]  Liping Ma,et al.  Organic electrical bistable devices and rewritable memory cells , 2002 .

[187]  Richard H. Friend,et al.  Ultrathin Self‐Assembled Layers at the ITO Interface to Control Charge Injection and Electroluminescence Efficiency in Polymer Light‐Emitting Diodes , 1998 .

[188]  A. S. Dhoot,et al.  Spin-dependent exciton formation in π-conjugated compounds , 2001, Nature.

[189]  N. Koch,et al.  Advanced surface modification of indium tin oxide for improved charge injection in organic devices. , 2005, Journal of the American Chemical Society.

[190]  Klaus Meerholz,et al.  Multi-colour organic light-emitting displays by solution processing , 2003, Nature.

[191]  Norbert Koch,et al.  Work Function Independent Hole‐Injection Barriers Between Pentacene and Conducting Polymers , 2005 .

[192]  Lisa C. Picciolo,et al.  Determination of the orbital lineup at reactive organic semiconductor interfaces using photoemission spectroscopy , 2001 .

[193]  N. Koch,et al.  Enhanced hole injection in a polymer light emitting diode using a small molecule monolayer bound to the anode , 2006 .

[194]  M. Grätzel,et al.  Self-assembled monolayers as interfaces for organic opto-electronic devices , 1999 .

[195]  W. R. Salaneck,et al.  Polymer band alignment at the interface with indium tin oxide: consequences for light emitting devices , 1999 .

[196]  N Koch,et al.  The effect of oxygen exposure on pentacene electronic structure , 2005, The European physical journal. E, Soft matter.

[197]  A. Kahn,et al.  Photoemission spectroscopy investigation of magnesium–Alq3 interfaces , 1998 .

[198]  Gilles Horowitz,et al.  The Concept of “Threshold Voltage” in Organic Field‐Effect Transistors , 1998 .

[199]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.