Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems

A generalized discriminant analysis based on a new optimization criterion is presented. The criterion extends the optimization criteria of the classical Linear Discriminant Analysis (LDA) when the scatter matrices are singular. An efficient algorithm for the new optimization problem is presented.The solutions to the proposed criterion form a family of algorithms for generalized LDA, which can be characterized in a closed form. We study two specific algorithms, namely Uncorrelated LDA (ULDA) and Orthogonal LDA (OLDA). ULDA was previously proposed for feature extraction and dimension reduction, whereas OLDA is a novel algorithm proposed in this paper. The features in the reduced space of ULDA are uncorrelated, while the discriminant vectors of OLDA are orthogonal to each other. We have conducted a comparative study on a variety of real-world data sets to evaluate ULDA and OLDA in terms of classification accuracy.

[1]  Jing-Yu Yang,et al.  Face recognition based on the uncorrelated discriminant transformation , 2001, Pattern Recognit..

[2]  J. Friedman Regularized Discriminant Analysis , 1989 .

[3]  L. Duchene,et al.  An Optimal Transformation for Discriminant and Principal Component Analysis , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[5]  A. Martínez,et al.  The AR face databasae , 1998 .

[6]  Xiaoou Tang,et al.  Dual-space linear discriminant analysis for face recognition , 2004, CVPR 2004.

[7]  Robert P. W. Duin,et al.  Stabilizing classifiers for very small sample sizes , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[8]  G. Wahba Spline models for observational data , 1990 .

[9]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[10]  David J. Hand,et al.  Kernel Discriminant Analysis , 1983 .

[11]  Jieping Ye,et al.  Feature extraction via generalized uncorrelated linear discriminant analysis , 2004, ICML.

[12]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[13]  Jing-Yu Yang,et al.  A theorem on the uncorrelated optimal discriminant vectors , 2001, Pattern Recognit..

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[16]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[17]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[18]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[19]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[20]  David D. Lewis,et al.  Reuters-21578 Text Categorization Test Collection, Distribution 1.0 , 1997 .

[21]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, NIPS 2004.

[22]  Sayan Mukherjee,et al.  Molecular classification of multiple tumor types , 2001, ISMB.

[23]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[24]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[26]  W. V. McCarthy,et al.  Discriminant Analysis with Singular Covariance Matrices: Methods and Applications to Spectroscopic Data , 1995 .

[27]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[28]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[29]  Haesun Park,et al.  Structure Preserving Dimension Reduction for Clustered Text Data Based on the Generalized Singular Value Decomposition , 2003, SIAM J. Matrix Anal. Appl..

[30]  Jieping Ye,et al.  An optimization criterion for generalized discriminant analysis on undersampled problems , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  David G. Stork,et al.  Pattern Classification , 1973 .

[32]  Robert P. W. Duin,et al.  Expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix , 1998, Pattern Recognit. Lett..

[33]  Konstantinos N. Plataniotis,et al.  Face recognition using kernel direct discriminant analysis algorithms , 2003, IEEE Trans. Neural Networks.

[34]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Pong C. Yuen,et al.  Regularized discriminant analysis and its application to face recognition , 2003, Pattern Recognit..

[36]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[37]  T DumaisSusan,et al.  Using linear algebra for intelligent information retrieval , 1995 .

[38]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[39]  R. Chellappa,et al.  Subspace Linear Discriminant Analysis for Face Recognition , 1999 .

[40]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[41]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[42]  John W. Sammon,et al.  An Optimal Set of Discriminant Vectors , 1975, IEEE Transactions on Computers.

[43]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.