A gradient flow approach to relaxation rates for the multi-dimensional Cahn–Hilliard equation

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  B. Merlet,et al.  A Ginzburg–Landau model with topologically induced free discontinuities , 2017, Annales de l'Institut Fourier.

[3]  Maria G. Westdickenberg,et al.  Metastability of the Cahn–Hilliard equation in one space dimension , 2017, Journal of Differential Equations.

[4]  Peter Howard,et al.  Stability of Transition Front Solutions in Multidimensional Cahn–Hilliard Systems , 2016, Journal of Nonlinear Science.

[5]  Elias Esselborn,et al.  Relaxation Rates for a Perturbation of a Stationary Solution to the Thin-Film Equation , 2016, SIAM J. Math. Anal..

[6]  Benoît Merlet,et al.  Phase Segregation for Binary Mixtures of Bose-Einstein Condensates , 2015, SIAM J. Math. Anal..

[7]  P. Howard Spectral analysis for transition front solutions in multidimensional Cahn–Hilliard systems , 2014 .

[8]  Felix Otto,et al.  Relaxation to Equilibrium in the One-Dimensional Cahn-Hilliard Equation , 2014, SIAM J. Math. Anal..

[9]  E. Carlen,et al.  Stability of Planar Fronts for a Non-Local Phase Kinetics Equation with a Conservation Law in D ≤ 3 , 2011, 1107.5189.

[10]  P. Howard Spectral analysis of planar transition fronts for the Cahn-Hilliard equation , 2008 .

[11]  Huijiang Zhao,et al.  Global existence and asymptotics of solutions of the Cahn–Hilliard equation , 2007 .

[12]  P. Howard Asymptotic behavior near planar transition fronts for the Cahn–Hilliard equation , 2007 .

[13]  A. Kupiainen,et al.  Anomalous scaling for three‐dimensional Cahn‐Hilliard fronts , 2005 .

[14]  Petru Mironescu,et al.  Ginzburg-landau type energy with discontinuous constraint , 1999 .

[15]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[16]  Stig Larsson,et al.  THE CAHN-HILLIARD EQUATION , 2007 .