Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus

[1]  U. Ungerstedt,et al.  Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. , 1971, Acta physiologica Scandinavica. Supplementum.

[2]  B. Berger,et al.  Dopaminergic innervation of the rat prefrontal cortex: A fluorescence histochemical study , 1976, Brain Research.

[3]  J. Féger,et al.  Responses of subthalamic and pallidal neurons to striatal stimulation: an extracellular study on awake monkeys , 1976, Brain Research.

[4]  R. Katzman.,et al.  Catecholaminergic innervation of the subthalamic nucleus: evidence for a rostral continuation of the A9 (substantia nigra) dopaminergic cell group , 1979, Brain Research.

[5]  L. Brown,et al.  A direct role of dopamine in the rat subthalamic nucleus and an adjacent intrapeduncular area. , 1979, Science.

[6]  K. Usunoff,et al.  Corticosubthalamic projection in the cat: an electron microscopic study , 1979, Brain Research.

[7]  C. Hammond,et al.  Pharmacological blockade of the globus pallidus-induced inhibitory response of subthalamic cells in the rat , 1980, Brain Research.

[8]  J. Deniau,et al.  Cortical inputs to the subthalamus: intracellular analysis , 1981, Brain Research.

[9]  T. Hattori,et al.  Direct projections from the centre median‐parafascicular complex to the subthalamic nucleus in the cat and rat , 1983, The Journal of comparative neurology.

[10]  C. Hammond,et al.  Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat , 1983, Neuroscience.

[11]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[12]  E. Scarnati,et al.  Bilateral corticosubthalamic nucleus projections: An electrophysiological study in rats with chronic cerebral lesions , 1985, Neuroscience.

[13]  S Afsharpour,et al.  Topographical projections of the cerebral cortex to the subthalamic nucleus , 1985, The Journal of comparative neurology.

[14]  F. F. Weight,et al.  Dopaminergic mechanisms in subthalamic nucleus of rat: analysis using horseradish peroxidase and microiontophoresis , 1985, Brain Research.

[15]  C. Hammond,et al.  Excitatory effect of iontophoretically applied dopamine on identified neurons of the rat subthalamic nucleus , 1986, Brain Research.

[16]  André Parent,et al.  Comparative neurobiology of the basal ganglia , 1986 .

[17]  M. Savasta,et al.  Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390 , 1986, Brain Research.

[18]  U. Ungerstedt,et al.  Extracellular levels of amino acids in striatum and globus pallidus of 6-hydroxydopamine-lesioned rats measured with microdialysis. , 1986, Acta physiologica Scandinavica.

[19]  H. Kita,et al.  Anatomy and Physiology of the Subthalamic Nucleus: A Driving Force of the Basal Ganglia , 1987 .

[20]  E. Scarnati,et al.  Increase in glutamate sensitivity of subthalamic nucleus neurons following bilateral decortication: a microiontophoretic study in the rat , 1987, Brain Research.

[21]  E. Scarnati,et al.  Pharmacological study of the cortical-induced excitation of subthalamic nucleus neurons in the rat: Evidence for amino acids as putative neurotransmitters , 1987, Neuroscience.

[22]  M. Martres,et al.  A detailed mapping of dopamine D-2 receptors in rat central nervous system by autoradiography with [125I]iodosulpride , 1987, Neuroscience.

[23]  J. Walters,et al.  Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat , 1988, Synapse.

[24]  N. Canteras,et al.  Somatosensory inputs to the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat , 1988, Brain Research.

[25]  T. Svensson,et al.  Firing patterns of midbrain dopamine neurons: differences between A9 and A10 cells. , 1988, Acta physiologica Scandinavica.

[26]  S. Gilman,et al.  Effects of excitotoxic striatal lesions on single unit activity in globus pallidus and entopeduncular nucleus of the cat , 1989, Brain Research.

[27]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[28]  A. Parent,et al.  Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry , 1989, The Journal of comparative neurology.

[29]  R. G. Robertson,et al.  Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine , 1989, Neuroscience.

[30]  P. Robledo,et al.  Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data , 1990, Brain Research.

[31]  M. Delong,et al.  Primate models of movement disorders of basal ganglia origin , 1990, Trends in Neurosciences.

[32]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[33]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[34]  S. T. Kitai,et al.  Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata , 1990, Brain Research.

[35]  J. Wayne Aldridge,et al.  The temporal structure of spike trains in the primate basal ganglia: afferent regulation of bursting demonstrated with precentral cerebral cortical ablation , 1991, Brain Research.

[36]  Henk J. Groenewegen,et al.  The Connections of the Medial Part of the Subthalamic Nucleus in the Rat: Evidence for a Parallel Organization , 1991 .

[37]  M. Caron,et al.  Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Micaela Morelli,et al.  The Basal Ganglia III , 1991, Advances in Behavioral Biology.

[39]  G S Oxford,et al.  D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole-cell and single-channel recording , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  H. Keshishian,et al.  Growth cone behavior underlying the development of stereotypic synaptic connections in Drosophila embryos , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  M. Chesselet,et al.  Effects of nigrostriatal lesions on the levels of messenger RNAs encoding two isoforms of glutamate decarboxylase in the globus pallidus and entopeduncular nucleus of the rat , 1992, Synapse.

[42]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.

[43]  L. Ryan,et al.  Alteration of neuronal responses in the subthalamic nucleus following globus pallidus and neostriatal lesions in rats , 1992, Brain Research Bulletin.

[44]  J. Hollerman,et al.  Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol , 1992, Brain Research.

[45]  A. Nieoullon,et al.  Cellular interactions in the striatum involving neuronal systems using “classical” neurotransmitters: Possible functional implications , 1992, Movement disorders : official journal of the Movement Disorder Society.

[46]  J. Penney,et al.  6-Hydroxydopamine lesions of the nigrostriatal pathway alter the expression of glutamate decarboxylase messenger RNA in rat globus pallidus projection neurons , 1992, Neuroscience.

[47]  J. Aceves,et al.  Appearance of EMG activity and motor asymmetry after unilateral lesions of the dopaminergic innervation to the subthalamic nucleus in the rat , 1993, Neuroscience Letters.

[48]  W. T. Thach,et al.  Basal ganglia intrinsic circuits and their role in behavior , 1993, Current Opinion in Neurobiology.

[49]  P. Goldman-Rakic,et al.  Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. , 1993, Cerebral cortex.

[50]  M. Mouroux,et al.  Evidence that the parafascicular projection to the subthalamic nucleus is glutamatergic. , 1993, Neuroreport.

[51]  G. Arbuthnott,et al.  Chemical signalling in the basal ganglia , 1993 .

[52]  Greg A. Gerhardt,et al.  Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats , 1993, Brain Research.

[53]  E. Pralong,et al.  Interactions of Dopamine with Glutamate‐ and GABA‐mediated Synaptic Transmission in the Rat Entorhinal Cortex In Vitro , 1993, The European journal of neuroscience.

[54]  H. Kita,et al.  Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat , 1993, Brain Research.

[55]  P. Salin,et al.  Regulation of glutamic acid decarboxylase gene expression in efferent neurons of the basal ganglia. , 1993, Progress in brain research.

[56]  H. Bergman,et al.  The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. , 1994, Journal of neurophysiology.

[57]  D. Law-Tho,et al.  Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study , 1994, Neuroscience Research.

[58]  J. Bolam,et al.  Neurons projecting from the entopeduncular nucleus to the thalamus receive convergent synaptic inputs from the subthalamic nucleus and the neostriatum in the rat , 1994, Brain Research.

[59]  G. Micheletti,et al.  Glutamate-Dopamine Balance in the Striatum: Pre- and Post-Synaptic Interactions , 1994 .

[60]  I. Lucki,et al.  Dopaminergic Stimulation of Subthalamic Nucleus Elicits Oral Dyskinesia in Rats , 1994, Experimental Neurology.

[61]  F. Wiesel,et al.  Characterization of dopamine receptor binding sites in the subthalamic nucleus. , 1994, Neuroreport.

[62]  M. Bevan,et al.  The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: A comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study , 1994, Neuroscience.

[63]  P. Gaspar,et al.  D1 and D2 Receptor Gene Expression in the Rat Frontal Cortex: Cellular Localization in Different Classes of Efferent Neurons , 1995, The European journal of neuroscience.

[64]  E. Geijo-Barrientos,et al.  The Effects of Dopamine on the Subthreshold Electrophysiological Responses of Rat Prefrontal Cortex Neurons In Vitro , 1995, The European journal of neuroscience.

[65]  J. Vincent,et al.  Dopamine D1 receptor modulates the voltage‐gated sodium current in rat striatal neurones through a protein kinase A. , 1995, The Journal of physiology.

[66]  Caron,et al.  Neuroanatomy of dopamine receptor gene expression : potential substrates for neuropsychiatric illness. Discussion , 1995 .

[67]  André Parent,et al.  Chemical anatomy of primate basal ganglia , 1995, Progress in neurobiology.

[68]  O. Hassani,et al.  Electrophysiological study of the excitatory parafascicular projection to the subthalamic nucleus and evidence for ipsi- and contralateral controls , 1995, Neuroscience.

[69]  J. Penney,et al.  The functional anatomy of disorders of the basal ganglia , 1995, Trends in Neurosciences.

[70]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.