MoO3 Films Spin‐Coated from a Nanoparticle Suspension for Efficient Hole‐Injection in Organic Electronics

MoO3 films spin-coated from a suspension of nanoparticles, which offers energetic properties nearly identical to those of thermally evaporated MoO3 films, are reported. It is demonstrated that our solution-based MoO3 acts as a very efficient hole-injection layer for organic devices.

[1]  Wolfgang Kowalsky,et al.  Indium-free transparent organic light emitting diodes with Al doped ZnO electrodes grown by atomic layer and pulsed laser deposition , 2008 .

[2]  G. Malliaras,et al.  Hole Injection in a Model Fluorene–Triarylamine Copolymer , 2009 .

[3]  Wolfgang Kowalsky,et al.  Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode , 2009 .

[4]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[5]  Zhenghong Lu,et al.  A metallic molybdenum suboxide buffer layer for organic electronic devices , 2010 .

[6]  Jean-Luc Brédas,et al.  Photoelectron spectroscopic study of the electronic band structure of polyfluorene and fluorene-arylamine copolymers at interfaces , 2007 .

[7]  Yanfeng Dai,et al.  Improved performances of organic light-emitting diodes with metal oxide as anode buffer , 2007 .

[8]  S. R. Forrest,et al.  High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer , 2000, Nature.

[9]  Alan J. Heeger,et al.  Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode , 1997 .

[10]  C. Rao,et al.  XPES studies of oxides of second- and third-row transition metals including rare earths , 1980 .

[11]  H. Snaith,et al.  Efficient Single‐Layer Polymer Light‐Emitting Diodes , 2010, Advanced materials.

[12]  Wolfgang Kowalsky,et al.  Low-voltage organic electroluminescence device with an ultrathin, hybrid structure , 2003 .

[13]  D. Ginley,et al.  Solution deposited NiO thin-films as hole transport layers in organic photovoltaics , 2010 .

[14]  Do-Young Kim,et al.  Energy level evolution of air and oxygen exposed molybdenum trioxide films , 2010 .

[15]  A. Kahn,et al.  P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide , 2009 .

[16]  F. Liu,et al.  Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer , 2010 .

[17]  A. Kahn,et al.  Effect of contamination on the electronic structure and hole-injection properties of MoO3/organic semiconductor interfaces , 2010 .

[18]  M.J.A. de Voigt,et al.  Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes , 2000 .

[19]  S. W. Cho,et al.  The origin of the hole injection improvements at indium tin oxide/ molybdenum trioxide/N,N' -bis(1-naphthyl)-N,N' -diphenyl-1,1' '-biphenyl-4,4'-diamine interfaces , 2008 .

[20]  Dong-Seok Leem,et al.  Low driving voltage and high stability organic light-emitting diodes with rhenium oxide-doped hole transporting layer , 2007 .

[21]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[22]  Wolfgang Kowalsky,et al.  Transparent Inverted Organic Light‐Emitting Diodes with a Tungsten Oxide Buffer Layer , 2008 .

[23]  Franky So,et al.  Degradation Mechanisms in Small‐Molecule and Polymer Organic Light‐Emitting Diodes , 2010, Advanced materials.

[24]  K. Sakanoue,et al.  Electronic structure of anode interface with molybdenum oxide buffer layer , 2010 .

[25]  Chieh-Wei Chen,et al.  High-performance organic thin-film transistors with metal oxide/metal bilayer electrode , 2005 .

[26]  T. Riedl,et al.  Highly efficient simplified organic light emitting diodes , 2007 .

[27]  Wolfgang Kowalsky,et al.  Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films , 2009 .