Local ensemble Kalman filtering in the presence of model bias

We modify the local ensemble Kalman filter (LEKF) to incorporate the effect of forecast model bias. The method is based on augmentation of the atmospheric state by estimates of the model bias, and we consider different ways of modeling (i.e. parameterizing) the model bias.We evaluate the effectiveness of the proposed augmented state ensemble Kalman filter through numerical experiments incorporating various model biases into the model of Lorenz and Emanuel. Our results highlight the critical role played by the selection of a good parameterization model for representing the form of the possible bias in the forecast model. In particular, we find that forecasts can be greatly improved provided that a good model parameterizing the model bias is used to augment the state in the Kalman filter.

[1]  Istvan Szunyogh,et al.  Assessing a local ensemble Kalman filter : perfect model experiments with the National Centers for Environmental Prediction global model , 2004 .

[2]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[3]  S. Cohn,et al.  Applications of Estimation Theory to Numerical Weather Prediction , 1981 .

[4]  R. Daley The Effect of Serially Correlated Observation and Model Error on Atmospheric Data Assimilation , 1992 .

[5]  James A. Carton,et al.  A Simple Ocean Data Assimilation Analysis of the Global Upper Ocean 1950–95. Part I: Methodology , 2000 .

[6]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[7]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[8]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[9]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[10]  Nancy Nichols,et al.  Estimation of systematic error in an equatorial ocean model using data assimilation , 2002 .

[11]  Edward Ott,et al.  Estimating the State of Large Spatiotemporally Chaotic Systems , 2007 .

[12]  B. Friedland Treatment of bias in recursive filtering , 1969 .

[13]  Xue Wei,et al.  Reanalysis without Radiosondes Using Ensemble Data Assimilation , 2004 .

[14]  Nancy Nichols,et al.  Assimilation of data into an ocean model with systematic errors near the equator , 2004 .

[15]  Peter Lynch,et al.  Initialization of the HIRLAM Model Using a Digital Filter , 1992 .

[16]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[17]  Peter Lynch,et al.  The Dolph-Chebyshev Window: A Simple Optimal Filter , 1997 .

[18]  James A. Hansen Accounting for Model Error in Ensemble-Based State Estimation and Forecasting , 2002 .

[19]  F. Baer,et al.  On Complete Filtering of Gravity Modes Through Nonlinear Initialization , 1977 .

[20]  Stephen E. Cohn,et al.  An Introduction to Estimation Theory (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[21]  R. Todling,et al.  Data Assimilation in the Presence of Forecast Bias: The GEOS Moisture Analysis , 2000 .

[22]  J. Derber A Variational Continuous Assimilation Technique , 1989 .

[23]  M. Buehner,et al.  Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .

[24]  J. Annan,et al.  Efficient parameter estimation for a highly chaotic system , 2004 .

[25]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[26]  J. Whitaker,et al.  Accounting for the Error due to Unresolved Scales in Ensemble Data Assimilation: A Comparison of Different Approaches , 2005 .

[27]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[28]  Len G. Margolin,et al.  The Postprocessing Galerkin and Nonlinear Galerkin Methods - A Truncation Analysis Point of View , 2003, SIAM J. Numer. Anal..

[29]  C. Bishop,et al.  Resilience of Hybrid Ensemble/3DVAR Analysis Schemes to Model Error and Ensemble Covariance Error , 2004 .

[30]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[31]  Istvan Szunyogh,et al.  Assessing a local ensemble Kalman filter: perfect model experiments with the National Centers for Environmental Prediction global model , 2005 .

[32]  K. Emanuel,et al.  Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model , 1998 .

[33]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[34]  D. Zupanski A General Weak Constraint Applicable to Operational 4DVAR Data Assimilation Systems , 1997 .

[35]  Istvan Szunyogh,et al.  Assessing a local ensemble Kalman filter: Perfect model experiments with the NCEP global model , 2004 .

[36]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .