Invariant Verification of Nonlinear Hybrid Automata Networks of Cardiac Cells

Verification algorithms for networks of nonlinear hybrid automata (HA) can aid us understand and control biological processes such as cardiac arrhythmia, formation of memory, and genetic regulation. We present an algorithm for over-approximating reach sets of networks of nonlinear HA which can be used for sound and relatively complete invariant checking. First, it uses automatically computed input-to-state discrepancy functions for the individual automata modules in the network $\mathcal{A}$ for constructing a low-dimensional model $\mathcal{M}$ . Simulations of both $\mathcal{A}$ and $\mathcal{M}$ are then used to compute the reach tubes for $\mathcal{A}$ . These techniques enable us to handle a challenging verification problem involving a network of cardiac cells, where each cell has four continuous variables and 29 locations. Our prototype tool can check bounded-time invariants for networks with 5 cells (20 continuous variables, 295 locations) typically in less than 15 minutes for up to reasonable time horizons. From the computed reach tubes we can infer biologically relevant properties of the network from a set of initial states.

[1]  Zhihao Jiang,et al.  Real-Time Heart Model for Implantable Cardiac Device Validation and Verification , 2010, 2010 22nd Euromicro Conference on Real-Time Systems.

[2]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[3]  Insup Lee,et al.  From Verification to Implementation: A Model Translation Tool and a Pacemaker Case Study , 2012, 2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium.

[4]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[5]  Mahesh Viswanathan,et al.  Verification of annotated models from executions , 2013, 2013 Proceedings of the International Conference on Embedded Software (EMSOFT).

[6]  F. Fenton,et al.  Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. , 1998, Chaos.

[7]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[8]  Sriram Sankaranarayanan,et al.  S-TaLiRo: A Tool for Temporal Logic Falsification for Hybrid Systems , 2011, TACAS.

[9]  Alessandro Vespignani,et al.  Epidemic dynamics and endemic states in complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  O. Bouissou,et al.  GRKLib: a Guaranteed Runge Kutta Library , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).

[11]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[12]  Nancy A. Lynch,et al.  The Theory of Timed I/o Automata , 2003 .

[13]  Mahesh Viswanathan,et al.  STORMED Hybrid Systems , 2008, ICALP.

[14]  Xin Chen,et al.  Flow*: An Analyzer for Non-linear Hybrid Systems , 2013, CAV.

[15]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[16]  F. Fenton,et al.  Minimal model for human ventricular action potentials in tissue. , 2008, Journal of theoretical biology.

[17]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[18]  Flavio H Fenton,et al.  Model-based control of cardiac alternans on a ring. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Nancy A. Lynch,et al.  Hybrid I/O automata , 1995, Inf. Comput..

[20]  Ezio Bartocci,et al.  Learning and detecting emergent behavior in networks of cardiac myocytes , 2008, CACM.

[21]  Zhenqi Huang,et al.  Proofs from simulations and modular annotations , 2014, HSCC.

[22]  S. Strogatz Exploring complex networks , 2001, Nature.

[23]  J. Lian,et al.  Open Source Modeling of Heart Rhythm and Cardiac Pacing , 2013 .

[24]  Nancy A. Lynch,et al.  The Theory of Timed I/O Automata (Synthesis Lectures in Computer Science) , 2006 .

[25]  J. Fell,et al.  Memory formation by neuronal synchronization , 2006, Brain Research Reviews.

[26]  David Angeli,et al.  Further Results on Incremental Input-to-State Stability , 2009, IEEE Transactions on Automatic Control.

[27]  Nancy A. Lynch,et al.  Verifying average dwell time of hybrid systems , 2008, TECS.

[28]  Rajeev Alur,et al.  Modeling and Verification of a Dual Chamber Implantable Pacemaker , 2012, TACAS.

[29]  Masato Edahiro,et al.  FIDES: An advanced chip multiprocessor platform for secure next generation mobile terminals , 2008, ACM Trans. Embed. Comput. Syst..

[30]  Insup Lee,et al.  A Safety-Assured Development Approach for Real-Time Software , 2010, 2010 IEEE 16th International Conference on Embedded and Real-Time Computing Systems and Applications.

[31]  Scott A. Smolka,et al.  Efficient Modeling of Excitable Cells Using Hybrid Automata , 2005 .

[32]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[33]  Sayan Mitra,et al.  A verification framework for hybrid systems , 2007 .

[34]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[35]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[36]  J.M. Jenkins,et al.  A stochastic network model of the interaction between cardiac rhythm and artificial pacemaker , 1993, IEEE Transactions on Biomedical Engineering.

[37]  Gerardo Lafferriere,et al.  A New Class of Decidable Hybrid Systems , 1999, HSCC.

[38]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[39]  Raymond E Ideker,et al.  Human ventricular fibrillation: wandering wavelets, mother rotors, or both? , 2006, Circulation.

[40]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[41]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.

[42]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[43]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[44]  Ezio Bartocci,et al.  From Cardiac Cells to Genetic Regulatory Networks , 2011, CAV.

[45]  A. Morse,et al.  Stability of switched systems with average dwell-time , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[46]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[47]  Ezio Bartocci,et al.  Modeling and simulation of cardiac tissue using hybrid I/O automata , 2009, Theor. Comput. Sci..

[48]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[49]  Alexandre Donzé,et al.  Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems , 2010, CAV.