Optimal power flow in distribution networks

In this chapter, a generalized approach for the OPF analysis in distribution networks is presented. This implies the inclusion of different types of DG units, taking into account the uncertainties of the input variables, the multiobjective optimization, and application of efficient metaheuristic methods for solving the OPF problem.

[1]  Xiaoqing Bai,et al.  Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints , 2009 .

[2]  K. Fujisawa,et al.  Semidefinite programming for optimal power flow problems , 2008 .

[3]  Ufuk Topcu,et al.  On the exactness of convex relaxation for optimal power flow in tree networks , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[4]  Steven H. Low,et al.  Optimal inverter VAR control in distribution systems with high PV penetration , 2011, 2012 IEEE Power and Energy Society General Meeting.

[5]  David Tse,et al.  Geometry of injection regions of power networks , 2011, IEEE Transactions on Power Systems.

[6]  G. C. Contaxis,et al.  Decoupled Optimal Load Flow Using Linear or Quadratic Programming , 1986, IEEE Transactions on Power Systems.

[7]  Joshua A. Taylor,et al.  Conic optimization of electric power systems , 2011 .

[8]  K. Mani Chandy,et al.  Quadratically Constrained Quadratic Programs on Acyclic Graphs With Application to Power Flow , 2012, IEEE Transactions on Control of Network Systems.

[9]  R. Jabr Radial distribution load flow using conic programming , 2006, IEEE Transactions on Power Systems.

[10]  Michael Chertkov,et al.  Local Control of Reactive Power by Distributed Photovoltaic Generators , 2010, 2010 First IEEE International Conference on Smart Grid Communications.

[11]  S. Low,et al.  Exact Convex Relaxation of Optimal Power Flow in Tree Networks , 2012, 1208.4076.

[12]  K. Mani Chandy,et al.  Inverter VAR control for distribution systems with renewables , 2011, 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[13]  K. Mani Chandy,et al.  Equivalence of branch flow and bus injection models , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[14]  E. A. Belati,et al.  Logarithmic barrier-augmented Lagrangian function to the optimal power flow problem , 2005 .

[15]  Hsiao-Dong Chiang,et al.  On the existence and uniqueness of load flow solution for radial distribution power networks , 1990 .

[16]  G. L. Torres,et al.  An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates , 1998 .

[17]  Wang Min,et al.  A trust region interior point algorithm for optimal power flow problems , 2005 .

[18]  M. E. Baran,et al.  Optimal sizing of capacitors placed on a radial distribution system , 1989 .

[19]  O. Alsac,et al.  Fast Decoupled Load Flow , 1974 .

[20]  J. Lavaei,et al.  Physics of power networks makes hard optimization problems easy to solve , 2012, 2012 IEEE Power and Energy Society General Meeting.

[21]  R. Romero,et al.  Optimal Capacitor Placement in Radial Distribution Networks , 2001, IEEE Power Engineering Review.

[22]  Felix F. Wu,et al.  Network reconfiguration in distribution systems for loss reduction and load balancing , 1989 .

[23]  S. Low,et al.  Zero Duality Gap in Optimal Power Flow Problem , 2012, IEEE Transactions on Power Systems.

[24]  Felix F. Wu,et al.  Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing , 1989, IEEE Power Engineering Review.