Neurexin-Neuroligin Cell Adhesion Complexes Contribute to Synaptotropic Dendritogenesis via Growth Stabilization Mechanisms In Vivo

[1]  D. Owald,et al.  Drosophila Neuroligin 1 Promotes Growth and Postsynaptic Differentiation at Glutamatergic Neuromuscular Junctions , 2010, Neuron.

[2]  T. Südhof,et al.  Neuroligin-1 Deletion Results in Impaired Spatial Memory and Increased Repetitive Behavior , 2010, The Journal of Neuroscience.

[3]  K. Haas,et al.  PKMζ Restricts Dendritic Arbor Growth by Filopodial and Branch Stabilization within the Intact and Awake Developing Brain , 2009, The Journal of Neuroscience.

[4]  S. Barrow,et al.  Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis , 2009, Neural Development.

[5]  O. Thoumine,et al.  Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts , 2008, Proceedings of the National Academy of Sciences.

[6]  P. Mattila,et al.  Filopodia: molecular architecture and cellular functions , 2008, Nature Reviews Molecular Cell Biology.

[7]  Simon X. Chen,et al.  In vivo imaging of seizure activity in a novel developmental seizure model , 2008, Experimental Neurology.

[8]  H. Cline,et al.  The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis , 2008, The Journal of physiology.

[9]  M. Poo,et al.  Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo , 2008, Nature Neuroscience.

[10]  T. Südhof,et al.  Activity-Dependent Validation of Excitatory versus Inhibitory Synapses by Neuroligin-1 versus Neuroligin-2 , 2007, Neuron.

[11]  T. Südhof,et al.  Deletion of α‐neurexins does not cause a major impairment of axonal pathfinding or synapse formation , 2007, The Journal of comparative neurology.

[12]  H. Cline,et al.  Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection. , 2007, Journal of neurophysiology.

[13]  Charles E. Schwartz,et al.  High frequency of neurexin 1β signal peptide structural variants in patients with autism , 2006, Neuroscience Letters.

[14]  Thomas C. Südhof,et al.  Neuroligins Determine Synapse Maturation and Function , 2006, Neuron.

[15]  Kurt Haas,et al.  AMPA receptors regulate experience-dependent dendritic arbor growth in vivo , 2006, Proceedings of the National Academy of Sciences.

[16]  C. Niell Theoretical analysis of a synaptotropic dendrite growth mechanism. , 2006, Journal of theoretical biology.

[17]  B. Matthews,et al.  BDNF increases synapse density in dendrites of developing tectal neurons in vivo , 2006, Development.

[18]  A. Craig,et al.  Structure Function and Splice Site Analysis of the Synaptogenic Activity of the Neurexin-1β LNS Domain , 2006, The Journal of Neuroscience.

[19]  Jianli Li,et al.  Stabilization of Axon Branch Dynamics by Synaptic Maturation , 2006, The Journal of Neuroscience.

[20]  O. Prange,et al.  Neuroligins Mediate Excitatory and Inhibitory Synapse Formation , 2005, Journal of Biological Chemistry.

[21]  Lu Chen,et al.  Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Scheiffele,et al.  Control of Excitatory and Inhibitory Synapse Formation by Neuroligins , 2005, Science.

[23]  Ann Marie Craig,et al.  Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins , 2004, Cell.

[24]  T. Dresbach,et al.  Synaptic targeting of neuroligin is independent of neurexin and SAP90/PSD95 binding , 2004, Molecular and Cellular Neuroscience.

[25]  M. Sheng,et al.  PDZ domain proteins of synapses , 2004, Nature Reviews Neuroscience.

[26]  Martin P Meyer,et al.  In vivo imaging of synapse formation on a growing dendritic arbor , 2004, Nature Neuroscience.

[27]  E. Isacoff,et al.  Neurexin mediates the assembly of presynaptic terminals , 2003, Nature Neuroscience.

[28]  Thomas Bourgeron,et al.  Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism , 2003, Nature Genetics.

[29]  E. S. Ruthazer,et al.  Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases , 2002, Nature.

[30]  R. Wong,et al.  Activity-dependent regulation of dendritic growth and patterning , 2002, Nature Reviews Neuroscience.

[31]  A. McAllister,et al.  Rapid recruitment of NMDA receptor transport packets to nascent synapses , 2002, Nature Neuroscience.

[32]  Kurt Haas,et al.  Targeted electroporation in Xenopus tadpoles in vivo--from single cells to the entire brain. , 2002, Differentiation; research in biological diversity.

[33]  O. Prange,et al.  Modular Transport of Postsynaptic Density-95 Clusters and Association with Stable Spine Precursors during Early Development of Cortical Neurons , 2001, The Journal of Neuroscience.

[34]  E. Zamir,et al.  Molecular complexity and dynamics of cell-matrix adhesions. , 2001, Journal of cell science.

[35]  K. Frei,et al.  Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. , 2001, The Biochemical journal.

[36]  Kurt Haas,et al.  Single-Cell Electroporationfor Gene Transfer In Vivo , 2001, Neuron.

[37]  A. McAllister,et al.  Cellular and molecular mechanisms of dendrite growth. , 2000, Cerebral cortex.

[38]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[39]  E. Ginns,et al.  The structure and expression of the human neuroligin-3 gene. , 2000, Gene.

[40]  H. Cline,et al.  Postsynaptic Calcium/Calmodulin-Dependent Protein Kinase II Is Required to Limit Elaboration of Presynaptic and Postsynaptic Neuronal Arbors , 1999, The Journal of Neuroscience.

[41]  T. Südhof,et al.  Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Hollis T. Cline,et al.  Glutamate Receptor Activity Is Required for Normal Development of Tectal Cell Dendrites In Vivo , 1998, The Journal of Neuroscience.

[43]  H. Cline,et al.  Stabilization of dendritic arbor structure in vivo by CaMKII. , 1998, Science.

[44]  T. Südhof,et al.  Binding Properties of Neuroligin 1 and Neurexin 1β Reveal Function as Heterophilic Cell Adhesion Molecules* , 1997, The Journal of Biological Chemistry.

[45]  T. Südhof,et al.  Binding of neuroligins to PSD-95. , 1997, Science.

[46]  R. Malinow,et al.  Maturation of a Central Glutamatergic Synapse , 1996, Science.

[47]  T. Südhof,et al.  Structures, Alternative Splicing, and Neurexin Binding of Multiple Neuroligins (*) , 1996, The Journal of Biological Chemistry.

[48]  C. Holt,et al.  Position, guidance, and mapping in the developing visual system. , 1993, Journal of neurobiology.

[49]  Kurt E. Johnson,et al.  Normal Table of Xenopus Laevis , 1968, The Yale Journal of Biology and Medicine.

[50]  Thomas Bourgeron,et al.  Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders , 2007, Nature Genetics.

[51]  A. Craig,et al.  Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. , 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  T. Südhof,et al.  Neuroligin 1: a splice site-specific ligand for beta-neurexins. , 1995, Cell.

[53]  J. E. Vaughn,et al.  Fine structure of synaptogenesis in the vertebrate central nervous system. , 1989, Synapse.

[54]  James E. Vaughn,et al.  Review: Fine structure of synaptogenesis in the vertebrate central nervous system , 1989 .

[55]  T. Serwold,et al.  Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases , 2022 .