Some Recent Results on Squarefree Words

When Axel Thue wrote these lines in the introduction to his 1912 paper on squarefree words, he certainly did not feel as a theoretical computer scientist. During the past seventy years, there was an increasing interest in squarefree words and more generally in repetitions in words. However, A. Thue's sentence seems still to hold : in some sense, he said that there is no reason to study squarefree words, excepted that it's a difficult question, and that it is of primary importance to investigate new domains. Seventy years later, these questions are no longer new, and one may ask if squarefree words served already.

[1]  Jonathan Goldstine,et al.  Bounded AFLs , 1976, J. Comput. Syst. Sci..

[2]  Franz-Josef Brandenburg,et al.  Uniformly Growing k-TH Power-Free Homomorphisms , 1988, Theor. Comput. Sci..

[3]  P. Pleasants Non-repetitive sequences , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Peter Weiner,et al.  Linear Pattern Matching Algorithms , 1973, SWAT.

[5]  Dwight R. Bean,et al.  Avoidable patterns in strings of symbols , 1979 .

[6]  Patrice Séébold Sur les morphismes qui engendrent des mots infinis ayant des facteurs prescrits , 1983 .

[7]  Arto Salomaa Jewels of formal language theory , 1981 .

[8]  Arturo Carpi On the Size of a Square-Free Morphism on a Three Letter Alphabet , 1983, Inf. Process. Lett..

[9]  A. Restivo,et al.  On weakly square free words , 1983, Bull. EATCS.

[10]  Karl Winklmann,et al.  An "Interchange Lemma" for Context-Free Languages , 1985, SIAM J. Comput..

[11]  Franco P. Preparata,et al.  Optimal Off-Line Detection of Repetitions in a String , 1983, Theor. Comput. Sci..

[12]  Robert Shelton Aperiodic words on three symbols. , 1981 .

[13]  David Haussler,et al.  Conditions Enforcing Regularity of Context-Free Languages , 1982, ICALP.

[14]  Maxime Crochemore,et al.  Sharp Characterizations of Squarefree Morphisms , 1982, Theor. Comput. Sci..

[15]  Patrice Sbold Sequences generated by infinitely iterated morphisms , 1985 .

[16]  Karel Culik,et al.  Classification of Noncounting Events , 1971, J. Comput. Syst. Sci..

[17]  Maurice Nivat,et al.  Quelques problèmes ouverts en théorie des langages algébriques , 1979, RAIRO Theor. Informatics Appl..

[18]  Maxime Crochemore,et al.  An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..

[19]  Juhani Karhumäki,et al.  On cube-free ω-words generated by binary morphisms , 1983, Discret. Appl. Math..

[20]  Jean-Jacques Pansiot,et al.  The Morse Sequence and Iterated Morphisms , 1981, Inf. Process. Lett..

[21]  H. Shyr A strongly primitive word of arbitrary length and its application , 1977 .

[22]  R. C. ENTRINGER,et al.  On Nonrepetitive Sequences , 1974, J. Comb. Theory, Ser. A.

[23]  Andrzej Ehrenfeucht,et al.  On the Subword Complexity of Square-Free D0L Languages , 1981, Theor. Comput. Sci..

[24]  Shuo-Yen Robert Li Annihilators in Nonrepetitive Semigroups , 1976 .

[25]  Andrzej Ehrenfeucht,et al.  Subword Complexities of Various Classes of Deterministic Developmental Languages without Interactions , 1975, Theor. Comput. Sci..

[26]  Raj Pal Soni,et al.  Aperiodic words on three symbols. III. , 1982 .

[27]  M. Crochemore Recherche linéaire d'un carré dans un mot , 1983 .

[28]  G. Rauzy,et al.  Suites algébriques, automates et substitutions , 1980 .

[29]  Sergei Ivanovich Adian,et al.  The Burnside problem and identities in groups , 1979 .

[30]  Michael G. Main,et al.  An O(n log n) Algorithm for Finding All Repetitions in a String , 1984, J. Algorithms.

[31]  Arto Salomaa Morphisms of free monoids and language theory , 1979 .

[32]  Patrice Séébold Sur les morphismes qui engendrent des mots infinis ayant des facteurs prescrits , 1983, Theoretical Computer Science.

[33]  Michael G. Main,et al.  Permutations Are Not Context-Free: An Application of the Interchange Lemma , 1982, Inf. Process. Lett..

[34]  G. A. Hedlund,et al.  Unending chess, symbolic dynamics and a problem in semigroups , 1944 .

[35]  Edward M. McCreight,et al.  A Space-Economical Suffix Tree Construction Algorithm , 1976, JACM.

[36]  Françoise Dejean,et al.  Sur un Théorème de Thue , 1972, J. Comb. Theory A.

[37]  Karl Winklmann,et al.  Repetitive Strings are not Context-Free , 1982, RAIRO Theor. Informatics Appl..

[38]  Christophe Reutenauer A New Characterization of the Regular Languages , 1981, ICALP.

[39]  Harold Marston Morse Recurrent geodesics on a surface of negative curvature , 1921 .

[40]  Anton Cerný On Generalized Words of Thue-Morse , 1984, MFCS.

[41]  Andrzej Ehrenfeucht,et al.  On the Separating Power of Eol Systems , 1983, RAIRO Theor. Informatics Appl..

[42]  M. Crochemore Mots Et Morphismes Sans Carré , 1983 .

[43]  Jan Brinkhuis,et al.  NON-REPETITIVE SEQUENCES ON THREE SYMBOLS , 1983 .

[44]  Jean-Jacques Pansiot A propos d'une conjecture de F. Dejean sur les répétitions dans les mots , 1984, Discret. Appl. Math..

[45]  Andrzej Ehrenfeucht,et al.  Repetitions in Homomorphisms and Languages , 1982, ICALP.