Vibration Response-Based Damage Detection

This chapter aimed to present different data driven Vibration-Based Methods (VBMs) for Structural Health Monitoring (SHM). This family of methods, widely used for engineering applications, present several advantages for damage identification applications. First, VBMs provide continuous information on the health state of the structure at a global level without the need to access the damaged elements and to know their location. Furthermore, damage can be identified using the dynamic response of the structure measured by sensors non-necessarily located in the proximity of damage and without any prior knowledge about the damage location. By principle, VBMs can identify damage related to changes in the dynamic properties of structures, such as stiffness variations due to modifications in the connections between structural elements, or changes in geometric and material properties. A classification of different VBMs was presented in this chapter. Furthermore, several case studies were presented to demonstrate the potential of these methods.

[1]  Yu Lei,et al.  Hilbert-Huang Based Approach for Structural Damage Detection , 2004 .

[2]  Ljubisa Stankovic,et al.  Time-frequency decomposition of multivariate multicomponent signals , 2018, Signal Process..

[3]  Maria Pina Limongelli,et al.  Optimal location of sensors for reconstruction of seismic responses through spline function interpolation , 2003 .

[4]  S. Joe Qin,et al.  Multivariate process monitoring and fault diagnosis by multi-scale PCA , 2002 .

[5]  Peter V. E. McClintock,et al.  Extraction of instantaneous frequencies from ridges in time-frequency representations of signals , 2013, Signal Process..

[6]  Guido De Roeck,et al.  One-year monitoring of the Z24-Bridge : environmental effects versus damage events , 2001 .

[7]  Claus-Peter Fritzen,et al.  Identification of mass, damping, and stiffness matrices of mechanical systems , 1986 .

[8]  D. Dickey,et al.  Identifying damage locations under ambient vibrations utilizing vector autoregressive models and Mahalanobis distances , 2012 .

[9]  Alfredo Güemes,et al.  Structural Health Monitoring for Advanced Composite Structures: A Review , 2020, Journal of Composites Science.

[10]  Maria Pina Limongelli,et al.  The interpolation damage detection method for frames under seismic excitation , 2011 .

[11]  Laurent Mevel,et al.  Merging Sensor Data from Multiple Temperature Scenarios for Vibration Monitoring of Civil Structures , 2008 .

[12]  Marek Krawczuk,et al.  Vibration analysis of a cracked beam , 1990 .

[13]  Maria Pina Limongelli The Surface Interpolation Method for damage localization in plates , 2019 .

[14]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[15]  M. Imregun,et al.  A review of model updating techniques , 1991 .

[16]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[17]  Patrick Flandrin,et al.  A complete ensemble empirical mode decomposition with adaptive noise , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[18]  Nalan Özkurt,et al.  Determination of wavelet ridges of nonstationary signals by singular value decomposition , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Vikram Pakrashi,et al.  Robust linear and nonlinear structural damage detection using recursive canonical correlation analysis , 2020 .

[20]  Michael I. Friswell,et al.  Structural Damage Detection using Independent Component Analysis , 2004 .

[21]  Dominique Zosso,et al.  Variational Mode Decomposition , 2014, IEEE Transactions on Signal Processing.

[22]  María Eugenia Torres,et al.  Improved complete ensemble EMD: A suitable tool for biomedical signal processing , 2014, Biomed. Signal Process. Control..

[23]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[24]  Daniel J. Inman,et al.  PCA-based Method for Damage Detection Exploring Electromechanical Impedance in a Composite Beam , 2015 .

[25]  Gaëtan Kerschen,et al.  Detection and quantification of non-linear structural behavior using principal component analysis , 2012 .

[26]  J. Elsner,et al.  Singular Spectrum Analysis: A New Tool in Time Series Analysis , 1996 .

[27]  Charles R. Farrar,et al.  DYNAMIC PARAMETER SIMILITUDE FOR CONCRETE MODELS , 1994 .

[28]  Hongping Zhu,et al.  Instantaneous frequency identification of time-varying structures by continuous wavelet transform , 2013 .

[29]  Pierre Dehombreux,et al.  Singular Spectrum Analysis for Bearing Defect Detection , 2011 .

[30]  Gethin Wyn Roberts,et al.  Damage Detection of Structures Subject to Nonlinear Effects of Changing Environmental Conditions , 2017 .

[31]  F. Vestroni,et al.  The use of modal curvatures for damage localization in beam-type structures , 2015 .

[32]  Spilios D. Fassois,et al.  Parametric identification of a time-varying structure based on vector vibration response measurements ☆ , 2009 .

[33]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Ming Liang,et al.  Wavelet‐Based Detection of Beam Cracks Using Modal Shape and Frequency Measurements , 2012, Comput. Aided Civ. Infrastructure Eng..

[35]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[36]  Spilios D. Fassois,et al.  Non-stationary random vibration modelling and analysis via functional series time-dependent ARMA (FS-TARMA) models – A critical survey , 2014 .

[37]  Charles R. Farrar,et al.  Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review , 1996 .

[38]  Yi-Zhou Lin,et al.  Structural Damage Detection with Automatic Feature‐Extraction through Deep Learning , 2017, Comput. Aided Civ. Infrastructure Eng..

[39]  Zhigang Wu,et al.  Time-varying modal parameters identification of a spacecraft with rotating flexible appendage by recursive algorithm , 2016 .

[40]  Rune Brincker,et al.  Vibration-based Damage Detection Using Input-output and Output-only Environmental Models: A Comparison , 2020 .

[41]  Ahsan Kareem,et al.  Wavelet Transforms for System Identification in Civil Engineering , 2003 .

[42]  Samit Ray-Chaudhuri,et al.  ARX model-based damage sensitive features for structural damage localization using output-only measurements , 2015 .

[43]  Hashem Shariatmadar,et al.  Damage localization under ambient excitations and non-stationary vibration signals by a new hybrid algorithm for feature extraction and multivariate distance correlation methods , 2019 .

[44]  Andreas Varga,et al.  On Computing Minimal Proper Nullspace Bases with Applications in Fault Detection , 2011 .

[45]  J. Warminski,et al.  Large amplitude vibrations of heated Timoshenko beams with delamination , 2016 .

[46]  J. Murphy,et al.  Dynamic response signatures of a scaled model platform for floating wind turbines in an ocean wave basin , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  Boualem Boashash,et al.  Generalised phase synchrony within multivariate signals: An emerging concept in time-frequency analysis , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[48]  Nuno M. M. Maia,et al.  Damage detection in structures: From mode shape to frequency response function methods , 2003 .

[49]  Helong Li,et al.  Structural damage detection using the combination method of EMD and wavelet analysis , 2007 .

[50]  G. De Roeck,et al.  Damage detection in bridges using modal curvatures: application to a real damage scenario , 1999 .

[51]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[53]  Vikram Pakrashi,et al.  First-Order Eigen-Perturbation Techniques for Real-Time Damage Detection of Vibrating Systems: Theory and Applications , 2019, Applied Mechanics Reviews.

[54]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[55]  Mostefa Mesbah,et al.  IF estimation for multicomponent signals using image processing techniques in the time-frequency domain , 2007, Signal Process..

[56]  Jean-Claude Golinval,et al.  Principal Component Analysis of a Piezosensor Array for Damage Localization , 2003 .

[57]  P. Paultre,et al.  Modal identification based on the time–frequency domain decomposition of unknown-input dynamic tests , 2013 .

[58]  I. Jolliffe Principal Component Analysis and Factor Analysis , 1986 .

[59]  Ratneshwar Jha,et al.  Damage detection in an experimental bridge model using Hilbert–Huang transform of transient vibrations , 2013 .

[60]  Pier Francesco Giordano,et al.  Vibration-based damage indicators: a comparison based on information entropy , 2020 .

[61]  M. Richman,et al.  Rotation of principal components , 1986 .

[62]  Sofia C. Olhede,et al.  Analysis of Modulated Multivariate Oscillations , 2012, IEEE Transactions on Signal Processing.

[63]  C. Williams,et al.  Damping as a damage indication parameter , 1997 .

[64]  A. K. Pandey,et al.  Damage Detection in Structures Using Changes in Flexibility , 1994 .

[65]  Chin-Hsiung Loh,et al.  Application of singular spectrum analysis to structural monitoring and damage diagnosis of bridges , 2014 .

[66]  Spilios D. Fassois,et al.  Parametric time-domain methods for non-stationary random vibration modelling and analysis — A critical survey and comparison , 2006 .

[67]  Carlos E. Ventura,et al.  Introduction to Operational Modal Analysis: Brincker/Introduction to Operational Modal Analysis , 2015 .

[68]  Brian F. Feeny,et al.  Part 1: Dynamical Characterization of a Frictionally Excited Beam , 2000 .

[69]  Charles R. Farrar,et al.  Novelty detection in a changing environment: Regression and interpolation approaches , 2002 .

[70]  Costas Papadimitriou,et al.  Optimal sensor placement methodology for parametric identification of structural systems , 2004 .

[71]  Jerzy Warminski,et al.  Numerical and experimental studies on vibration based methods for detection of damage in composite beams , 2017 .

[72]  Chih-Chieh Chang,et al.  Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach , 2005 .

[73]  Luis Eduardo Mujica,et al.  Applying robust variant of Principal Component Analysis as a damage detector in the presence of outliers , 2015 .

[74]  Maurice Goursat,et al.  Output-Only Subspace-Based Structural Identification: From Theory to Industrial Testing Practice , 2001 .

[75]  Alfredo Cigada,et al.  On the use of AR models for SHM: A global sensitivity and uncertainty analysis framework , 2018, Reliab. Eng. Syst. Saf..

[76]  Zhengyuan Xu,et al.  Singular spectrum analysis based on the perturbation theory , 2011 .

[77]  K. Law,et al.  Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure , 2006 .

[78]  M. Ghil,et al.  Monte Carlo Singular Spectrum Analysis (SSA) Revisited: Detecting Oscillator Clusters in Multivariate Datasets , 2015 .

[79]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[80]  Charles R. Farrar,et al.  Application of the strain energy damage detection method to plate-like structures , 1999 .

[81]  Rune Brincker,et al.  Vibration Based Inspection of Civil Engineering Structures , 1993 .

[82]  Edilson Delgado-Trejos,et al.  Diagonal time dependent state space models for modal decomposition of non-stationary signals , 2018, Signal Process..

[83]  Sriram Narasimhan,et al.  Hybrid Time‐Frequency Blind Source Separation Towards Ambient System Identification of Structures , 2012, Comput. Aided Civ. Infrastructure Eng..

[84]  B. Feeny,et al.  Interpreting proper orthogonal modes of randomly excited vibration systems , 2003 .

[85]  Claus-Peter Fritzen,et al.  Self-diagnosis of smart structures based on dynamical properties , 2009 .

[86]  Weiqi Wang,et al.  Joint spectrogram segmentation and ridge-extraction method for separating multimodal guided waves in long bones , 2013 .

[87]  Boualem Boashash,et al.  Chapter 3 - Theory of Quadratic TFDs , 2003 .

[88]  Pizhong Qiao,et al.  Vibration-based Damage Identification Methods: A Review and Comparative Study , 2011 .

[89]  Michel Verhaegen,et al.  Recursive subspace identification of linear and non-linear Wiener state-space models , 2000, Autom..

[90]  C. Farrar,et al.  SYSTEM IDENTIFICATION FROM AMBIENT VIBRATION MEASUREMENTS ON A BRIDGE , 1997 .

[91]  Peter A Vanrolleghem,et al.  Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor. , 2005, Journal of biotechnology.

[92]  Leon Cohen,et al.  Time Frequency Analysis: Theory and Applications , 1994 .

[93]  Jocelyn Chanussot,et al.  Unsupervised separation of seismic waves using the watershed algorithm on time-scale images , 2004 .

[94]  Siu-Seong Law,et al.  Singular spectrum analysis for enhancing the sensitivity in structural damage detection , 2014 .

[95]  Jérôme Gilles,et al.  Empirical Wavelet Transform , 2013, IEEE Transactions on Signal Processing.

[96]  Richard Kronland-Martinet,et al.  Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies , 1992, IEEE Trans. Inf. Theory.

[97]  C. Papadimitriou,et al.  The effect of prediction error correlation on optimal sensor placement in structural dynamics , 2012 .

[98]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[99]  R. Carniel,et al.  On the singular values decoupling in the Singular Spectrum Analysis of volcanic tremor at Stromboli , 2006 .

[100]  Jerzy Warminski,et al.  Vibration Based Methods For Damage Detection In Structures , 2016 .

[101]  Laurent Mevel,et al.  APPLICATION OF A SUBSPACE-BASED FAULT DETECTION METHOD TO INDUSTRIAL STRUCTURES , 1999 .

[102]  Michal Petrů,et al.  Health Monitoring of Civil Infrastructures by Subspace System Identification Method: An Overview , 2020, Applied Sciences.

[103]  Ljubisa Stankovic,et al.  Synchrosqueezing-based time-frequency analysis of multivariate data , 2015, Signal Process..

[104]  Bálint Vanek,et al.  Nullspace-Based Input Reconfiguration Architecture for Overactuated Aerial Vehicles , 2018, IEEE Transactions on Control Systems Technology.

[105]  Anjan Dutta,et al.  Damage detection in bridges using accurate modal parameters , 2004 .

[106]  D. Gabor,et al.  Theory of communication. Part 1: The analysis of information , 1946 .

[107]  K. Lakshmi,et al.  Singular spectrum analysis combined with ARMAX model for structural damage detection , 2017 .

[108]  Arun Kumar Pandey,et al.  Damage detection from changes in curvature mode shapes , 1991 .

[109]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[110]  Wei Fan,et al.  Vibration-based Damage Identification Methods: A Review and Comparative Study , 2011 .

[111]  V. Pakrashi,et al.  Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices , 2020 .

[112]  G. Kerschen,et al.  PHYSICAL INTERPRETATION OF THE PROPER ORTHOGONAL MODES USING THE SINGULAR VALUE DECOMPOSITION , 2002 .

[113]  Valery Naranjo,et al.  Removing interference components in time-frequency representations using morphological operators , 2011, J. Vis. Commun. Image Represent..

[114]  Brian F. Feeny,et al.  On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems , 2002 .

[115]  Edwin Reynders,et al.  Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification , 2014 .

[116]  Vikram Pakrashi,et al.  Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection , 2020 .

[117]  Mustafa Gul,et al.  Statistical pattern recognition for Structural Health Monitoring using time series modeling: Theory and experimental verifications , 2009 .

[118]  C. Ratcliffe DAMAGE DETECTION USING A MODIFIED LAPLACIAN OPERATOR ON MODE SHAPE DATA , 1997 .

[119]  Norris Stubbs,et al.  Damage Localization in Structures Without Baseline Modal Parameters , 1996 .

[120]  Gregory W. Reich,et al.  Structural system identification: from reality to models , 2003 .

[121]  J. Antoni Blind separation of vibration components: Principles and demonstrations , 2005 .

[122]  Satish Nagarajaiah,et al.  Real-Time Structural Damage Monitoring by Input Error Function , 2005 .

[123]  Brian F. Feeny,et al.  Part 2: Proper Orthogonal Modal Modeling of a Frictionally Excited Beam , 2000 .

[124]  Maria Giuseppina Limongelli The modal surface interpolation method for damage localization , 2017 .

[125]  Pier Francesco Giordano,et al.  Response‐based time‐invariant methods for damage localization on a concrete bridge , 2020, Structural Concrete.

[126]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[127]  L. Mevel,et al.  Statistical model-based damage detection and localization: subspace-based residuals and damage-to-noise sensitivity ratios , 2004 .

[128]  Ruigen Yao,et al.  Autoregressive statistical pattern recognition algorithms for damage detection in civil structures , 2012 .

[129]  A. M. R. Ribeiro,et al.  A review of vibration-based structural health monitoring with special emphasis on composite materials , 2006 .

[130]  P. F. Pai,et al.  LOCATING STRUCTURAL DAMAGE BY DETECTING BOUNDARY EFFECTS , 2000 .

[131]  Brian F. Feeny,et al.  APPLICATION OF PROPER ORTHOGONAL DECOMPOSITION TO STRUCTURAL VIBRATION ANALYSIS , 2003 .

[132]  Maosen Cao,et al.  Identification of multiple cracks in noisy conditions using scale-correlation-based multiscale product of SWPT with laser vibration measurement , 2020 .

[133]  Satish Nagarajaiah,et al.  Output only modal identification and structural damage detection using time frequency & wavelet techniques , 2009 .

[134]  Charles R. Farrar,et al.  Novelty detection under changing environmental conditions , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[135]  Fu-Ping Cheng,et al.  Multiple crack identification of a free-free beam with uniform material property variation and varied noised frequency , 2008 .

[136]  D. P. Mandic,et al.  Multivariate empirical mode decomposition , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[137]  Guido De Roeck,et al.  Vibration based SHM: comparison of the performance of modal features vs features extracted from spatial filters under changing environmental conditions , 2006 .

[138]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .

[139]  Charles R. Farrar,et al.  Nonlinear System Identification for Damage Detection , 2007 .

[140]  Hiroshi Furuya,et al.  Implementation algorithms for self-identification of adaptive structures with variable geometric properties , 2008 .

[141]  P. Tse,et al.  An improved Hilbert–Huang transform and its application in vibration signal analysis , 2005 .

[142]  Vikram Pakrashi,et al.  Real-time unified single- and multi-channel structural damage detection using recursive singular spectrum analysis , 2019 .

[143]  Hoon Sohn,et al.  Damage diagnosis using time series analysis of vibration signals , 2001 .

[144]  J. Golinval,et al.  Fault detection based on Kernel Principal Component Analysis , 2010 .

[145]  Luca Landi,et al.  Instantaneous modal identification under varying structural characteristics: A decentralized algorithm , 2020 .

[146]  D. Mandic,et al.  Dynamic response mitigation of floating wind turbine platforms using tuned liquid column dampers , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[147]  José Manuel Menéndez,et al.  Experimental analysis of buckling in aircraft skin panels by fibre optic sensors , 2001 .

[148]  Kokichi Sugihara,et al.  New Spectral Decomposition Method for Three-Dimensional Shape Models and Its Applications , 2005, J. Comput. Inf. Sci. Eng..

[149]  Sylvain Meignen,et al.  Time-Frequency Reassignment and Synchrosqueezing: An Overview , 2013, IEEE Signal Processing Magazine.

[150]  Mosbeh R. Kaloop,et al.  Single input-single output identification thermal response model of bridge using nonlinear ARX with wavelet networks , 2015 .

[151]  Michael Link,et al.  Identification of damage parameters of a full-scale steel structure damaged by seismic loading , 2001 .

[152]  Jerzy Warminski,et al.  Vibration based damage detection in composite beams under temperature variations using Poincaré maps , 2012 .

[153]  Hoon Sohn,et al.  Effects of environmental and operational variability on structural health monitoring , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[154]  E. Parloo,et al.  DAMAGE ASSESSMENT USING MODE SHAPE SENSITIVITIES , 2003 .

[155]  Spilios D. Fassois,et al.  Adaptable Functional Series TARMA Models for Non-Stationary Signal Modelling , 2012 .

[156]  Jian Chen,et al.  STRUCTURAL DAMAGE DETECTION USING EMPIRICAL MODE DECOMPOSITION: EXPERIMENTAL INVESTIGATION , 2004 .

[157]  Maurice Goursat,et al.  In situ damage monitoring in vibration mechanics: diagnostics and predictive maintenance , 1993 .

[158]  J. Beck,et al.  Entropy-Based Optimal Sensor Location for Structural Model Updating , 2000 .

[159]  C. De Vera,et al.  Embedded Self-Sensing Piezoelectric for Damage Detection , 1998 .

[160]  Gaëtan Kerschen,et al.  Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis , 2005 .

[161]  Weihua Li,et al.  Recursive PCA for adaptive process monitoring , 1999 .

[162]  B Basu,et al.  A comprehensive study of the delay vector variance method for quantification of nonlinearity in dynamical systems , 2016, Royal Society Open Science.

[163]  Maria Pina Limongelli,et al.  Frequency response function interpolation for damage detection under changing environment , 2010 .

[164]  Fj Guild,et al.  Vibration damping for crack detection in composite laminates , 2004 .

[165]  Luca Landi,et al.  Modal assurance distribution of multivariate signals for modal identification of time-varying dynamic systems , 2021 .

[166]  W. Staszewski IDENTIFICATION OF NON-LINEAR SYSTEMS USING MULTI-SCALE RIDGES AND SKELETONS OF THE WAVELET TRANSFORM , 1998 .

[167]  J. Rodellar,et al.  A structural damage detection indicator based on principal component analysis and statistical hypothesis testing , 2014 .

[168]  C. Fritzen,et al.  DAMAGE DETECTION BASED ON MODEL UPDATING METHODS , 1998 .

[169]  Vikram Pakrashi,et al.  Estimation of nonlinearities from pseudodynamic and dynamic responses of bridge structures using the Delay Vector Variance method , 2016 .

[170]  Walter M. West,et al.  Illustration of the use of modal assurance criterion to detect structural changes in an Orbiter test specimen , 1986 .

[171]  Robert D. Adams,et al.  The location of defects in structures from measurements of natural frequencies , 1979 .

[172]  Costas Papadimitriou,et al.  Updating robust reliability using structural test data , 2001 .

[173]  Shirley J. Dyke,et al.  Damage Detection Accommodating Varying Environmental Conditions , 2006 .