Deeper, Wider, Sharper: Next-Generation Ground-Based Gravitational-Wave Observations of Binary Black Holes.

Next-generation observations will revolutionize our understanding of binary black holes and will detect new sources, such as intermediate-mass black holes. Primary science goals include: Discover binary black holes throughout the observable Universe; Reveal the fundamental properties of black holes; Uncover the seeds of supermassive black holes.

[1]  M. Mapelli,et al.  Very massive stars, pair-instability supernovae and intermediate-mass black holes with the sevn code , 2017, 1706.06109.

[2]  M. Mapelli Massive black hole binaries from runaway collisions: the impact of metallicity , 2016, 1604.03559.

[3]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[4]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[5]  V. Kalogera,et al.  Pulsational Pair-instability Supernovae in Very Close Binaries , 2018, The Astrophysical Journal.

[6]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[7]  J. Alsing,et al.  Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state , 2017, 1709.07889.

[8]  P. Lasky,et al.  Measuring eccentricity in binary black hole inspirals with gravitational waves , 2018, Physical Review D.

[9]  A. Loeb,et al.  Redshift Evolution of the Black Hole Merger Rate from Globular Clusters , 2018, The Astrophysical Journal.

[10]  N. Kanda,et al.  The detection rate of inspiral and quasi-normal modes of Population III binary black holes which can confirm or refute the general relativity in the strong gravity region , 2015, 1505.06962.

[11]  M. Volonteri The Formation and Evolution of Massive Black Holes , 2012, Science.

[12]  Takahiro Tanaka,et al.  Primordial black holes—perspectives in gravitational wave astronomy , 2018, 1801.05235.

[13]  J. Gair,et al.  Intermediate-mass-ratio-inspirals in the Einstein Telescope. II. Parameter estimation errors. , 2010, 1011.0421.

[14]  M. Colpi,et al.  The Star Clusters That Make Black Hole Binaries across Cosmic Time , 2018, The Astrophysical Journal.

[15]  Pau Amaro-Seoane,et al.  DETECTION OF IMBHs WITH GROUND-BASED GRAVITATIONAL WAVE OBSERVATORIES: A BIOGRAPHY OF A BINARY OF BLACK HOLES, FROM BIRTH TO DEATH , 2009, 0910.0254.

[16]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[17]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[18]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[19]  Huan Yang,et al.  Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown , 2018, General Relativity and Gravitation.

[20]  S. Hughes Gravitational Waves from Merging Compact Binaries , 2009, 0903.4877.

[21]  M. Mapelli,et al.  The cosmic merger rate of neutron stars and black holes , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  W. Farr,et al.  MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.

[23]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[24]  Philip Graff,et al.  Use of gravitational waves to probe the formation channels of compact binaries , 2015, 1503.04307.

[25]  Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes , 2015, 1511.01431.

[26]  M. Giersz,et al.  MOCCA code for star cluster simulations – IV. A new scenario for intermediate mass black hole formation in globular clusters , 2015, 1506.05234.

[27]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[28]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[29]  C. Tout,et al.  The structure and evolution of quasi-stars , 2011, 1102.5098.

[30]  Massimo Stiavelli,et al.  SEEING THE FIRST SUPERNOVAE AT THE EDGE OF THE UNIVERSE WITH JWST , 2012, 1209.3457.

[31]  Chris L. Fryer,et al.  MISSING BLACK HOLES UNVEIL THE SUPERNOVA EXPLOSION MECHANISM , 2011, 1110.1635.

[32]  R. Ellis,et al.  Probing cosmic dawn with emission lines: predicting infrared and nebular line emission for ALMA and JWST , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  A. Merloni,et al.  ESO-Athena Synergy White Paper , 2017, 1705.06064.

[34]  C. Pankow,et al.  Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations , 2017, 1704.07379.

[35]  R. O’Shaughnessy,et al.  Distinguishing black-hole spin-orbit resonances by their gravitational-wave signatures , 2014, 1507.05587.

[36]  R. Klessen,et al.  Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes , 2018, Publications of the Astronomical Society of Australia.

[37]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[38]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[39]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[40]  C. Mishra,et al.  Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope , 2010, 1005.0304.

[41]  L. Verde,et al.  Signatures of primordial black holes as seeds of supermassive black holes , 2017, 1712.01311.

[42]  B. A. Boom,et al.  Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO , 2017, 1704.04628.

[43]  The Lynx Team The Lynx Mission Concept Study Interim Report. , 2018, 1809.09642.

[44]  J. Gair,et al.  Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals , 2017, 1703.09722.

[45]  Ilya Mandel,et al.  Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments , 2017, 1703.06873.

[46]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[47]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.

[48]  C. Pankow,et al.  ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO , 2016, 1609.05916.

[49]  B. Metzger,et al.  Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817 , 2017, 1710.05938.

[50]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[51]  M. Fishbach,et al.  Does the Black Hole Merger Rate Evolve with Redshift? , 2018, The Astrophysical Journal.

[52]  M. Mapelli,et al.  Merging black hole binaries: the effects of progenitor's metallicity, mass-loss rate and Eddington factor , 2017, 1711.03556.

[53]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226 , 2016, 1603.08955.

[54]  B. Kocsis,et al.  Black Hole Mergers from an Evolving Population of Globular Clusters. , 2018, Physical review letters.

[55]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[56]  Boyuan Liu,et al.  Gravitational waves from the remnants of the first stars in nuclear star clusters , 2016, Monthly Notices of the Royal Astronomical Society.

[57]  J. Gair,et al.  Exploring intermediate and massive black-hole binaries with the Einstein Telescope , 2009, 0907.5450.

[58]  S. Woosley Pulsational Pair-instability Supernovae , 2016, 1608.08939.

[59]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[60]  Jason Kalirai,et al.  Scientific discovery with the James Webb Space Telescope , 2018, Contemporary Physics.

[61]  M. Volonteri,et al.  Journey to the MBH-σ relation: the fate of low-mass black holes in the Universe , 2009, 0903.2262.

[62]  J. Gair,et al.  Science with the space-based interferometer eLISA: Supermassive black hole binaries , 2015, 1511.05581.

[63]  X.Chen,et al.  The Cosmic Dawn and Epoch of Reionization with the Square Kilometre Array , 2015, 1505.07568.

[64]  J. Greene,et al.  A ∼50,000 M⊙ SOLAR MASS BLACK HOLE IN THE NUCLEUS OF RGG 118 , 2015, 1506.07531.

[65]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[66]  S. E. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[67]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[68]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[69]  A. Graham,et al.  Expected intermediate mass black holes in the Virgo cluster. II. Late-type galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[70]  Richard O'Shaughnessy,et al.  Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.

[71]  A. Kottas,et al.  THE NEUTRON STAR MASS DISTRIBUTION , 2010, 1011.4291.

[72]  M. Mapelli,et al.  The cosmic merger rate of stellar black hole binaries from the Illustris simulation , 2017, 1708.05722.

[73]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[74]  Duncan A. Brown,et al.  Spectroscopic analysis of stellar mass black-hole mergers in our local universe with ground-based gravitational wave detectors , 2016, 1607.07845.

[75]  S. Vitale,et al.  Characterization of binary black holes by heterogeneous gravitational-wave networks , 2018, Physical Review D.

[76]  R. Perna,et al.  Intermediate-mass black holes from Population III remnants in the first galactic nuclei , 2016, 1603.08513.

[77]  L. Verde,et al.  GW×LSS: chasing the progenitors of merging binary black holes , 2018, Journal of Cosmology and Astroparticle Physics.

[78]  E. Thrane,et al.  Determining the population properties of spinning black holes , 2017, 1704.08370.

[79]  J. Silk Feedback by Massive Black Holes in Gas-rich Dwarf Galaxies , 2017, 1703.08553.

[80]  S. Gossan,et al.  Bayesian model selection for testing the no-hair theorem with black hole ringdowns , 2011, 1111.5819.

[81]  Jim W. Barrett,et al.  Accuracy of inference on the physics of binary evolution from gravitational-wave observations , 2017, 1711.06287.

[82]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[83]  Chris L. Fryer,et al.  The effect of pair-instability mass loss on black-hole mergers , 2016, 1607.03116.

[84]  C. Peng How Mergers May Affect the Mass Scaling Relation between Gravitationally Bound Systems , 2007 .

[85]  W. Farr,et al.  Measuring the Star Formation Rate with Gravitational Waves from Binary Black Holes , 2018, The Astrophysical Journal.

[86]  J. K. Blackburn,et al.  Tests of General Relativity with GW170817. , 2018, Physical review letters.

[87]  M. Volonteri,et al.  From the first stars to the first black holes , 2016, 1601.07915.

[88]  A. Graham,et al.  Expected intermediate-mass black holes in the Virgo cluster. I. Early-type galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[89]  M. Evans,et al.  Metrics for next-generation gravitational-wave detectors , 2019, Classical and Quantum Gravity.

[90]  M. Evans,et al.  Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors , 2016, 1610.06917.

[91]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[92]  A. Ferrara,et al.  Formation of Supermassive Black Hole Seeds , 2016, Publications of the Astronomical Society of Australia.

[93]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[94]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[95]  A. Vuorinen,et al.  Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. , 2017, Physical review letters.

[96]  D. Holz,et al.  COMPACT REMNANT MASS FUNCTION: DEPENDENCE ON THE EXPLOSION MECHANISM AND METALLICITY , 2011, 1110.1726.

[97]  B. A. Boom,et al.  Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817 , 2017, 1710.05836.

[98]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[99]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[100]  C. Haster,et al.  DYNAMICAL FORMATION OF THE GW150914 BINARY BLACK HOLE , 2016, 1604.04254.

[101]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[102]  G. Nelemans,et al.  The influence of the distribution of cosmic star formation at different metallicities on the properties of merging double compact objects , 2018, Monthly Notices of the Royal Astronomical Society.

[103]  The most massive black holes on the Fundamental Plane of black hole accretion , 2017, 1710.10268.

[104]  A. Merloni Observing Supermassive Black Holes Across Cosmic Time: From Phenomenology to Physics , 2015, 1505.04940.

[105]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[106]  G. Pareschi,et al.  Athena+: The first Deep Universe X-ray Observatory , 2013, 1310.3814.

[107]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[108]  C. Fryer,et al.  Parameterizing the Supernova Engine and Its Effect on Remnants and Basic Yields , 2017, 1712.03415.

[109]  C. Peng How Mergers May Affect The Mass Scaling Relations Between Black Holes, Galaxies, and Other Gravita , 2007, 0704.1860.

[110]  A. Seth,et al.  Improved Dynamical Constraints on the Mass of the Central Black Hole in NGC 404 , 2016, 1610.09385.

[111]  P. Padovani,et al.  SKA-Athena Synergy White Paper , 2018, 1807.09080.

[112]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[113]  G. Meynet,et al.  The spin of the second-born black hole in coalescing binary black holes , 2018, Astronomy & Astrophysics.

[114]  The LIGO Scientific Collaboration,et al.  Astrophysical Implications of the Binary Black-Hole Merger GW150914 , 2016, 1602.03846.

[115]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.