Beyond Transmitting Bits: Context, Semantics, and Task-Oriented Communications

Communication systems to date primarily aim at reliably communicating bit sequences. Such an approach provides efficient engineering designs that are agnostic to the meanings of the messages or to the goal that the message exchange aims to achieve. Next generation systems, however, can be potentially enriched by folding message semantics and goals of communication into their design. Further, these systems can be made cognizant of the context in which communication exchange takes place, thereby providing avenues for novel design insights. This tutorial summarizes the efforts to date, starting from its early adaptations, semantic-aware and task-oriented communications, covering the foundations, algorithms and potential implementations. The focus is on approaches that utilize information theory to provide the foundations, as well as the significant role of learning in semantics and task-aware communications.

[1]  David Burth Kurka,et al.  DeepJSCC-Q: Constellation Constrained Deep Joint Source-Channel Coding , 2022, IEEE Journal on Selected Areas in Information Theory.

[2]  L. Dai,et al.  Demo: Real-Time Semantic Communications with a Vision Transformer , 2022, 2022 IEEE International Conference on Communications Workshops (ICC Workshops).

[3]  K. Mikolajczyk,et al.  Channel-Adaptive Wireless Image Transmission With OFDM , 2022, IEEE Wireless Communications Letters.

[4]  S. Barbarossa,et al.  Goal-Oriented Communication for Edge Learning Based On the Information Bottleneck , 2022, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Xinyuan Zhang,et al.  Cognitive Semantic Communication Systems Driven by Knowledge Graph , 2022, ICC 2022 - IEEE International Conference on Communications.

[6]  S. Mandt,et al.  An Introduction to Neural Data Compression , 2022, Found. Trends Comput. Graph. Vis..

[7]  Photios A. Stavrou,et al.  A Rate Distortion Approach to Goal-Oriented Communication , 2022, 2022 IEEE International Symposium on Information Theory (ISIT).

[8]  Wali Ullah Khan,et al.  A Survey on Semantic Communications for Intelligent Wireless Networks , 2022, Wireless Personal Communications.

[9]  A. Wagner The Rate-Distortion-Perception Tradeoff: The Role of Common Randomness , 2022, ArXiv.

[10]  Tian Han,et al.  Semantic-aware Speech to Text Transmission with Redundancy Removal , 2022, 2022 IEEE International Conference on Communications Workshops (ICC Workshops).

[11]  Geoffrey Y. Li,et al.  Semantic Communications: Principles and Challenges , 2021, ArXiv.

[12]  Zhongwei Si,et al.  Nonlinear Transform Source-Channel Coding for Semantic Communications , 2021, IEEE Journal on Selected Areas in Communications.

[13]  K. B. Letaief,et al.  Task-Oriented Multi-User Semantic Communications , 2021, IEEE Journal on Selected Areas in Communications.

[14]  Deniz Gündüz,et al.  DeepWiVe: Deep-Learning-Aided Wireless Video Transmission , 2021, IEEE Journal on Selected Areas in Communications.

[15]  Fangwei Zhang,et al.  Toward Wisdom-Evolutionary and Primitive-Concise 6G:A New Paradigm of Semantic Communication Networks , 2021, Engineering.

[16]  Deniz Gündüz,et al.  Context-Aware Effective Communications , 2021, 2021 55th Asilomar Conference on Signals, Systems, and Computers.

[17]  Hun-Seok Kim,et al.  Deep Joint Source-Channel Coding for Wireless Image Transmission with Adaptive Rate Control , 2021, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[18]  Petar Popovski,et al.  What is Semantic Communication? A View on Conveying Meaning in the Era of Machine Intelligence , 2021, J. Commun. Inf. Networks.

[19]  Harpreet S. Dhillon,et al.  Age of Information in Multi-source Updating Systems Powered by Energy Harvesting , 2021, IEEE Journal on Selected Areas in Information Theory.

[20]  Hun-Seok Kim,et al.  OFDM-Guided Deep Joint Source Channel Coding for Wireless Multipath Fading Channels , 2021, IEEE Transactions on Cognitive Communications and Networking.

[21]  S. Mandt,et al.  Supervised Compression for Resource-Constrained Edge Computing Systems , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[22]  M. Debbah,et al.  Semantics-Native Communication via Contextual Reasoning , 2021, IEEE Transactions on Cognitive Communications and Networking.

[23]  Joan S. Pujol Roig,et al.  Effective Communications: A Joint Learning and Communication Framework for Multi-Agent Reinforcement Learning Over Noisy Channels , 2021, IEEE Journal on Selected Areas in Communications.

[24]  Minje Kim,et al.  Harp-Net: Hyper-Autoencoded Reconstruction Propagation for Scalable Neural Audio Coding , 2021, 2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).

[25]  Zhenzi Weng,et al.  Semantic Communications for Speech Recognition , 2021, 2021 IEEE Global Communications Conference (GLOBECOM).

[26]  Sennur Ulukus,et al.  Age of Information in G/G/1/1 Systems: Age Expressions, Bounds, Special Cases, and Optimization , 2021, IEEE Transactions on Information Theory.

[27]  Ashish Khisti,et al.  Universal Rate-Distortion-Perception Representations for Lossy Compression , 2021, NeurIPS.

[28]  Zhibo Chen,et al.  Task-Driven Semantic Coding via Reinforcement Learning , 2021, IEEE Transactions on Image Processing.

[29]  Orhan Arikan,et al.  Towards goal-oriented semantic signal processing: Applications and future challenges , 2021, Digit. Signal Process..

[30]  Yu Chen,et al.  Deep Learning in Latent Space for Video Prediction and Compression , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  K. Mikolajczyk,et al.  AirNet: Neural Network Transmission over the Air , 2021, 2022 IEEE International Symposium on Information Theory (ISIT).

[32]  Deniz Gündüz,et al.  Denoising Noisy Neural Networks: A Bayesian Approach with Compensation , 2021, IEEE Transactions on Signal Processing.

[33]  Dong Xu,et al.  FVC: A New Framework towards Deep Video Compression in Feature Space , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Harpreet S. Dhillon,et al.  Closed-Form Characterization of the MGF of AoI in Energy Harvesting Status Update Systems , 2021, IEEE Transactions on Information Theory.

[35]  Jiaoyan Chen,et al.  Unsupervised Knowledge Graph Alignment by Probabilistic Reasoning and Semantic Embedding , 2021, IJCAI.

[36]  H. Vincent Poor,et al.  A Rate-Distortion Framework for Characterizing Semantic Information , 2021, 2021 IEEE International Symposium on Information Theory (ISIT).

[37]  Lucas Theis,et al.  A coding theorem for the rate-distortion-perception function , 2021, ArXiv.

[38]  Walid Saad,et al.  Distributed Learning in Wireless Networks: Recent Progress and Future Challenges , 2021, IEEE Journal on Selected Areas in Communications.

[39]  Xiaojiang Chen,et al.  A Comprehensive Survey of Scene Graphs: Generation and Application , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  K. Johansson,et al.  Semantic Communications in Networked Systems: A Data Significance Perspective , 2021, IEEE Network.

[41]  Zhijin Qin,et al.  Semantic Communication Systems for Speech Transmission , 2021, IEEE Journal on Selected Areas in Communications.

[42]  Eirikur Agustsson,et al.  On the advantages of stochastic encoders , 2021, ArXiv.

[43]  Yuyi Mao,et al.  Learning Task-Oriented Communication for Edge Inference: An Information Bottleneck Approach , 2021, IEEE Journal on Selected Areas in Communications.

[44]  Osvaldo Simeone,et al.  Federated Learning over Wireless Device-to-Device Networks: Algorithms and Convergence Analysis , 2021, IEEE Journal on Selected Areas in Communications.

[45]  Guangming Shi,et al.  From Semantic Communication to Semantic-Aware Networking: Model, Architecture, and Open Problems , 2020, IEEE Communications Magazine.

[46]  Leighton Pate Barnes,et al.  Over-the-Air Statistical Estimation , 2020, GLOBECOM 2020 - 2020 IEEE Global Communications Conference.

[47]  B. Ai,et al.  Wireless Image Transmission Using Deep Source Channel Coding With Attention Modules , 2020, IEEE Transactions on Circuits and Systems for Video Technology.

[48]  Sergio Barbarossa,et al.  6G Networks: Beyond Shannon Towards Semantic and Goal-Oriented Communications , 2020, Comput. Networks.

[49]  Witold Pedrycz,et al.  AFSSE: An Interpretable Classifier With Axiomatic Fuzzy Set and Semantic Entropy , 2020, IEEE Transactions on Fuzzy Systems.

[50]  Deniz Gündüz,et al.  Blind Federated Edge Learning , 2020, IEEE Transactions on Wireless Communications.

[51]  Deniz Gündüz,et al.  Communicate to Learn at the Edge , 2020, IEEE Communications Magazine.

[52]  Deniz Gündüz,et al.  Bandwidth-Agile Image Transmission With Deep Joint Source-Channel Coding , 2020, IEEE Transactions on Wireless Communications.

[53]  Sumit Purohit,et al.  Semantic Property Graph for Scalable Knowledge Graph Analytics , 2020, 2021 IEEE International Conference on Big Data (Big Data).

[54]  Marios Kountouris,et al.  Semantics-Empowered Communication for Networked Intelligent Systems , 2020, IEEE Communications Magazine.

[55]  Deniz Gündüz,et al.  Wireless Image Retrieval at the Edge , 2020, IEEE Journal on Selected Areas in Communications.

[56]  David Minnen,et al.  Channel-Wise Autoregressive Entropy Models for Learned Image Compression , 2020, 2020 IEEE International Conference on Image Processing (ICIP).

[57]  Roy D. Yates,et al.  Age of Information: An Introduction and Survey , 2020, IEEE Journal on Selected Areas in Communications.

[58]  Kun Zhou,et al.  Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion , 2020, KDD.

[59]  Eirikur Agustsson,et al.  Scale-Space Flow for End-to-End Optimized Video Compression , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[60]  Jiayi Liu,et al.  Pruning Algorithms to Accelerate Convolutional Neural Networks for Edge Applications: A Survey , 2020, ArXiv.

[61]  Deniz Gündüz,et al.  Deep Joint Source-Channel Coding of Images with Feedback , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[62]  Ziv Goldfeld,et al.  The Information Bottleneck Problem and its Applications in Machine Learning , 2020, IEEE Journal on Selected Areas in Information Theory.

[63]  Piji Li,et al.  Storytelling from an Image Stream Using Scene Graphs , 2020, AAAI.

[64]  Yuan Xie,et al.  Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey , 2020, Proceedings of the IEEE.

[65]  Amit P. Sheth,et al.  Knowledge Graph Semantic Enhancement of Input Data for Improving AI , 2020, IEEE Internet Computing.

[66]  Deniz Gündüz Joint Source-Channel Coding of Images with (not very) Deep Learning , 2020 .

[67]  Shlomo Shamai,et al.  On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views , 2020, Entropy.

[68]  Deniz Gündüz,et al.  One-Bit Over-the-Air Aggregation for Communication-Efficient Federated Edge Learning: Design and Convergence Analysis , 2020, IEEE Transactions on Wireless Communications.

[69]  Wen Gao,et al.  Video Coding for Machines: A Paradigm of Collaborative Compression and Intelligent Analytics , 2020, IEEE Transactions on Image Processing.

[70]  Irene Cheng,et al.  Semantic Learning for Image Compression (SLIC) , 2019, ICSM.

[71]  Eytan Modiano,et al.  Age of Information: A New Metric for Information Freshness , 2019, Age of Information.

[72]  Matthew W. Crocker,et al.  Semantic Entropy in Language Comprehension , 2019, Entropy.

[73]  David Burth Kurka,et al.  DeepJSCC-f: Deep Joint Source-Channel Coding of Images With Feedback , 2019, IEEE Journal on Selected Areas in Information Theory.

[74]  M. Codreanu,et al.  On the Age of Information in Multi-Source Queueing Models , 2019, IEEE Transactions on Communications.

[75]  Abdelaziz Djelouah,et al.  Neural Inter-Frame Compression for Video Coding , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[76]  H. Poor,et al.  A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks , 2019, IEEE Transactions on Wireless Communications.

[77]  Taco S. Cohen,et al.  Video Compression With Rate-Distortion Autoencoders , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[78]  Yash Patel,et al.  Human Perceptual Evaluations for Image Compression , 2019, ArXiv.

[79]  Yonina C. Eldar,et al.  Deep Task-Based Quantization † , 2019, Entropy.

[80]  Yaohui Jin,et al.  TransMS: Knowledge Graph Embedding for Complex Relations by Multidirectional Semantics , 2019, IJCAI.

[81]  Deniz Gündüz,et al.  Federated Learning Over Wireless Fading Channels , 2019, IEEE Transactions on Wireless Communications.

[82]  Abdellatif Zaidi,et al.  Distributed Hypothesis Testing: Cooperation and Concurrent Detection , 2019, IEEE Transactions on Information Theory.

[83]  Anthony Ephremides,et al.  The Age of Incorrect Information: A New Performance Metric for Status Updates , 2019, IEEE/ACM Transactions on Networking.

[84]  Deniz Gündüz,et al.  Semantic-Effectiveness Filtering and Control for Post-5G Wireless Connectivity , 2019, Journal of the Indian Institute of Science.

[85]  Yonina C. Eldar,et al.  Deep Quantization for MIMO Channel Estimation , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[86]  Deniz Gündüz,et al.  Deep Joint Source-Channel Coding for Wireless Image Transmission , 2019, IEEE Transactions on Cognitive Communications and Networking.

[87]  Albert Y. Zomaya,et al.  Federated Learning over Wireless Networks: Optimization Model Design and Analysis , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[88]  James Gross,et al.  On the Distribution of AoI for the GI/GI/1/1 and GI/GI/1/2* Systems: Exact Expressions and Bounds , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[89]  Deniz Gündüz,et al.  Successive Refinement of Images with Deep Joint Source-Channel Coding , 2019, 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[90]  Massoud Pedram,et al.  BottleNet: A Deep Learning Architecture for Intelligent Mobile Cloud Computing Services , 2019, 2019 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).

[91]  Yochai Blau,et al.  Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff , 2019, ICML.

[92]  Deniz Gündüz,et al.  Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[93]  Zhibo Chen,et al.  Learning based Facial Image Compression with Semantic Fidelity Metric , 2018, Neurocomputing.

[94]  Anthony Ephremides,et al.  Age of information performance of multiaccess strategies with packet management , 2018, Journal of Communications and Networks.

[95]  Harpreet S. Dhillon,et al.  On the Role of Age of Information in the Internet of Things , 2018, IEEE Communications Magazine.

[96]  Yonggang Wen,et al.  JALAD: Joint Accuracy-And Latency-Aware Deep Structure Decoupling for Edge-Cloud Execution , 2018, 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS).

[97]  Xiaoyun Zhang,et al.  DVC: An End-To-End Deep Video Compression Framework , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[98]  Stefano Ermon,et al.  Neural Joint Source-Channel Coding , 2018, ICML.

[99]  Steve Branson,et al.  Learned Video Compression , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[100]  Inaki Estella Aguerri,et al.  Vector Gaussian CEO Problem Under Logarithmic Loss and Applications , 2018, IEEE Transactions on Information Theory.

[101]  Inaki Estella Aguerri,et al.  Vector Gaussian CEO Problem Under Logarithmic Loss , 2018, 2018 IEEE Information Theory Workshop (ITW).

[102]  Nando de Freitas,et al.  Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning , 2018, ICML.

[103]  Stephan Mandt,et al.  Deep Generative Video Compression , 2018, NeurIPS.

[104]  Lei Liu,et al.  Auto-tuning Neural Network Quantization Framework for Collaborative Inference Between the Cloud and Edge , 2018, ICANN.

[105]  Bjorn Ottersten,et al.  Learning-based Physical Layer Communications for Multiagent Collaboration , 2018, 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).

[106]  Joelle Pineau,et al.  TarMAC: Targeted Multi-Agent Communication , 2018, ICML.

[107]  Jun Fu,et al.  Dual Attention Network for Scene Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  David Minnen,et al.  Joint Autoregressive and Hierarchical Priors for Learned Image Compression , 2018, NeurIPS.

[109]  Aditya Mahajan,et al.  Remote Estimation Over a Packet-Drop Channel With Markovian State , 2018, IEEE Transactions on Automatic Control.

[110]  Inaki Estella Aguerri,et al.  Distributed Variational Representation Learning , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[111]  Roy D. Yates,et al.  The Age of Information in Networks: Moments, Distributions, and Sampling , 2018, IEEE Transactions on Information Theory.

[112]  Jingning Han,et al.  DSSLIC: Deep Semantic Segmentation-based Layered Image Compression , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[113]  Yin Sun,et al.  Information Aging Through Queues: A Mutual Information Perspective , 2018, 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[114]  Eirikur Agustsson,et al.  Deep Generative Models for Distribution-Preserving Lossy Compression , 2018, NeurIPS.

[115]  Klaus-Robert Müller,et al.  Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication , 2018, 2019 International Joint Conference on Neural Networks (IJCNN).

[116]  Zongqing Lu,et al.  Learning Attentional Communication for Multi-Agent Cooperation , 2018, NeurIPS.

[117]  Zhiyuan Liu,et al.  Entity-Duet Neural Ranking: Understanding the Role of Knowledge Graph Semantics in Neural Information Retrieval , 2018, ACL.

[118]  Chao-Yuan Wu,et al.  Video Compression through Image Interpolation , 2018, ECCV.

[119]  Tetsuya Takine,et al.  A General Formula for the Stationary Distribution of the Age of Information and Its Application to Single-Server Queues , 2018, IEEE Transactions on Information Theory.

[120]  Luc Van Gool,et al.  Generative Adversarial Networks for Extreme Learned Image Compression , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[121]  Anthony Ephremides,et al.  On the Age of Information With Packet Deadlines , 2018, IEEE Transactions on Information Theory.

[122]  Michael Carbin,et al.  The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks , 2018, ICLR.

[123]  David P. Wipf,et al.  Compressing Neural Networks using the Variational Information Bottleneck , 2018, ICML.

[124]  Vangelis Angelakis,et al.  Age of Information: A New Concept, Metric, and Tool , 2018, Found. Trends Netw..

[125]  Deniz Gündüz,et al.  Distributed Hypothesis Testing Over Discrete Memoryless Channels , 2018, IEEE Transactions on Information Theory.

[126]  Andrea J. Goldsmith,et al.  Deep Learning for Joint Source-Channel Coding of Text , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[127]  Luc Van Gool,et al.  Towards Image Understanding from Deep Compression without Decoding , 2018, ICLR.

[128]  Leonardo Rey Vega,et al.  The Role of Information Complexity and Randomization in Representation Learning , 2018, ArXiv.

[129]  Yuval Kochman,et al.  On the Reliability Function of Distributed Hypothesis Testing Under Optimal Detection , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[130]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[131]  Eytan Modiano,et al.  Scheduling Algorithms for Minimizing Age of Information in Wireless Broadcast Networks with Random Arrivals , 2017, IEEE Transactions on Mobile Computing.

[132]  Quan Wang,et al.  Wavenet Based Low Rate Speech Coding , 2017, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[133]  Zhendong Mao,et al.  Knowledge Graph Embedding: A Survey of Approaches and Applications , 2017, IEEE Transactions on Knowledge and Data Engineering.

[134]  Deniz Gündüz,et al.  The multi-layer information bottleneck problem , 2017, 2017 IEEE Information Theory Workshop (ITW).

[135]  Babak Hassibi,et al.  Sequential coding of Gauss-Markov sources with packet erasures and feedback , 2017, 2017 IEEE Information Theory Workshop (ITW).

[136]  Srihari Kankanahalli,et al.  End-To-End Optimized Speech Coding with Deep Neural Networks , 2017, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[137]  Inaki Estella Aguerri,et al.  Distributed Information Bottleneck Method for Discrete and Gaussian Sources , 2017, ArXiv.

[138]  Sadaf Salehkalaibar,et al.  Hypothesis Testing Over the Two-Hop Relay Network , 2017, IEEE Transactions on Information Theory.

[139]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[140]  Yin Sun,et al.  Sampling of the Wiener Process for Remote Estimation Over a Channel With Random Delay , 2017, IEEE Transactions on Information Theory.

[141]  Xiangyu Zhang,et al.  ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[142]  Lubomir D. Bourdev,et al.  Real-Time Adaptive Image Compression , 2017, ICML.

[143]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[144]  James P. Callan,et al.  Explicit Semantic Ranking for Academic Search via Knowledge Graph Embedding , 2017, WWW.

[145]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[146]  Shlomo Shamai,et al.  On the capacity of cloud radio access networks with oblivious relaying , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[147]  Abbas El Gamal,et al.  Strong functional representation lemma and applications to coding theorems , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[148]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[149]  Alexander A. Alemi,et al.  Deep Variational Information Bottleneck , 2017, ICLR.

[150]  Valero Laparra,et al.  End-to-end Optimized Image Compression , 2016, ICLR.

[151]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[152]  Jungwon Lee,et al.  Towards the Limit of Network Quantization , 2016, ICLR.

[153]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[154]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.

[155]  Vanessa Testoni,et al.  Transmitting What Matters: Task-Oriented Video Composition and Compression , 2016, 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).

[156]  Khalifeh AlJadda,et al.  The Semantic Knowledge Graph: A Compact, Auto-Generated Model for Real-Time Traversal and Ranking of any Relationship within a Domain , 2016, 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[157]  Hanan Samet,et al.  Pruning Filters for Efficient ConvNets , 2016, ICLR.

[158]  Roy D. Yates,et al.  The Age of Information: Real-Time Status Updating by Multiple Sources , 2016, IEEE Transactions on Information Theory.

[159]  Han Xiao,et al.  Knowledge Semantic Representation: A Generative Model for Interpretable Knowledge Graph Embedding , 2016, ArXiv.

[160]  Han Xiao,et al.  KSR: A Semantic Representation of Knowledge Graph within a Novel Unsupervised Paradigm , 2016, 1608.07685.

[161]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[162]  Yiran Chen,et al.  Learning Structured Sparsity in Deep Neural Networks , 2016, NIPS.

[163]  Sebastian Nowozin,et al.  f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.

[164]  Ananthram Swami,et al.  The semantic communication game , 2016, 2016 IEEE International Conference on Communications (ICC).

[165]  Shimon Whiteson,et al.  Learning to Communicate with Deep Multi-Agent Reinforcement Learning , 2016, NIPS.

[166]  Xiaoqiang Ren,et al.  Infinite Horizon Optimal Transmission Power Control for Remote State Estimation Over Fading Channels , 2016, IEEE Transactions on Automatic Control.

[167]  Pablo Piantanida,et al.  Collaborative Information Bottleneck , 2016, IEEE Transactions on Information Theory.

[168]  Yu Hu,et al.  Probabilistic Reasoning via Deep Learning: Neural Association Models , 2016, ArXiv.

[169]  Forrest N. Iandola,et al.  SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.

[170]  Blaise Agüera y Arcas,et al.  Communication-Efficient Learning of Deep Networks from Decentralized Data , 2016, AISTATS.

[171]  Ran El-Yaniv,et al.  Binarized Neural Networks , 2016, NIPS.

[172]  Mérouane Debbah,et al.  Distributed Binary Detection With Lossy Data Compression , 2016, IEEE Transactions on Information Theory.

[173]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[174]  Sotirios A. Tsaftaris,et al.  Classification-aware distortion metric for HEVC intra coding , 2015, 2015 Visual Communications and Image Processing (VCIP).

[175]  David Minnen,et al.  Variable Rate Image Compression with Recurrent Neural Networks , 2015, ICLR.

[176]  Yoshua Bengio,et al.  BinaryConnect: Training Deep Neural Networks with binary weights during propagations , 2015, NIPS.

[177]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[178]  Marian Codreanu,et al.  On the Age of Information in Status Update Systems With Packet Management , 2015, IEEE Transactions on Information Theory.

[179]  Aditya Mahajan,et al.  Distortion-transmission trade-off in real-time transmission of Gauss-Markov sources , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[180]  Victor S. Lempitsky,et al.  Fast ConvNets Using Group-Wise Brain Damage , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[181]  Michael S. Bernstein,et al.  Image retrieval using scene graphs , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[182]  Yixin Chen,et al.  Compressing Neural Networks with the Hashing Trick , 2015, ICML.

[183]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[184]  Santanu Chaudhury,et al.  Perceptual Depth Preserving Saliency based Image Compression , 2015, PerMIn '15.

[185]  Pritish Narayanan,et al.  Deep Learning with Limited Numerical Precision , 2015, ICML.

[186]  Tamer Basar,et al.  Optimal estimation with limited measurements and noisy communication , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[187]  Sung Hoon Lim,et al.  A Unified Approach to Hybrid Coding , 2015, IEEE Transactions on Information Theory.

[188]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[189]  Yoshua Bengio,et al.  Training deep neural networks with low precision multiplications , 2014 .

[190]  Ming Yang,et al.  Compressing Deep Convolutional Networks using Vector Quantization , 2014, ArXiv.

[191]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[192]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[193]  Manoranjan Paul,et al.  Very low bit rate video coding , 2014 .

[194]  Deniz Gündüz,et al.  Source-Channel Coding Under Energy, Delay, and Buffer Constraints , 2014, IEEE Transactions on Wireless Communications.

[195]  Joan Bruna,et al.  Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation , 2014, NIPS.

[196]  Shengxi Li,et al.  Region-of-Interest Based Conversational HEVC Coding with Hierarchical Perception Model of Face , 2014, IEEE Journal of Selected Topics in Signal Processing.

[197]  Aylin Yener,et al.  Semantic index assignment , 2014, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS).

[198]  Michael W. Marcellin,et al.  Image compression based on task-specific information , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[199]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[200]  Deniz Gündüz,et al.  Joint Source-Channel Coding With Time-Varying Channel and Side-Information , 2013, IEEE Transactions on Information Theory.

[201]  Tamás Linder,et al.  On Optimal Zero-Delay Coding of Vector Markov Sources , 2013, IEEE Transactions on Information Theory.

[202]  Christopher Bulla,et al.  Region of Interest Encoding in Video Conference Systems , 2013, MMEDIA 2013.

[203]  Jason Weston,et al.  A semantic matching energy function for learning with multi-relational data , 2013, Machine Learning.

[204]  Tamer Basar,et al.  Optimal Strategies for Communication and Remote Estimation With an Energy Harvesting Sensor , 2012, IEEE Transactions on Automatic Control.

[205]  Roy D. Yates,et al.  Real-time status: How often should one update? , 2012, 2012 Proceedings IEEE INFOCOM.

[206]  Tsachy Weissman,et al.  Multiterminal Source Coding Under Logarithmic Loss , 2011, IEEE Transactions on Information Theory.

[207]  Minyue Li,et al.  Distribution Preserving Quantization , 2011, ArXiv.

[208]  Hans-Peter Kriegel,et al.  A Three-Way Model for Collective Learning on Multi-Relational Data , 2011, ICML.

[209]  Dariush Divsalar,et al.  Joint source-channel coding for deep space image transmission using rateless codes , 2011, 2011 Information Theory and Applications Workshop.

[210]  Nuno C. Martins,et al.  Remote State Estimation With Communication Costs for First-Order LTI Systems , 2011, IEEE Transactions on Automatic Control.

[211]  Aaron B. Wagner,et al.  Optimality of binning for distributed hypothesis testing , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[212]  Homer H. Chen,et al.  Perceptual Rate-Distortion Optimization Using Structural Similarity Index as Quality Metric , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[213]  W. Bastiaan Kleijn,et al.  Distribution Preserving Quantization With Dithering and Transformation , 2010, IEEE Signal Processing Letters.

[214]  Dina Katabi,et al.  SoftCast: one-size-fits-all wireless video , 2010, SIGCOMM '10.

[215]  Amos Lapidoth,et al.  Sending a Bivariate Gaussian Over a Gaussian MAC , 2010, IEEE Transactions on Information Theory.

[216]  Deniz Gündüz,et al.  Wyner–Ziv Coding Over Broadcast Channels: Digital Schemes , 2009, IEEE Transactions on Information Theory.

[217]  Yossef Steinberg,et al.  Coding and Common Reconstruction , 2009, IEEE Transactions on Information Theory.

[218]  Demosthenis Teneketzis,et al.  Optimal Design of Sequential Real-Time Communication Systems , 2009, IEEE Transactions on Information Theory.

[219]  Robert G. Gallager,et al.  Variations on a Theme by Schalkwijk and Kailath , 2008, IEEE Transactions on Information Theory.

[220]  Lizhong Zheng,et al.  Unequal Error Protection: An Information-Theoretic Perspective , 2008, IEEE Transactions on Information Theory.

[221]  Amos Lapidoth,et al.  Broadcasting Correlated Gaussians , 2007, IEEE Transactions on Information Theory.

[222]  Naftali Tishby,et al.  The Information Bottleneck Revisited or How to Choose a Good Distortion Measure , 2007, 2007 IEEE International Symposium on Information Theory.

[223]  Amos Lapidoth,et al.  Sending a Bivariate Gaussian Source over a Gaussian MAC with Feedback , 2007, 2007 IEEE International Symposium on Information Theory.

[224]  J.S. Baras,et al.  Multiple Sampling for Estimation on a Finite Horizon , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[225]  Johannes B. Huber,et al.  Information Combining , 2006, Found. Trends Commun. Inf. Theory.

[226]  Rich Caruana,et al.  Model compression , 2006, KDD '06.

[227]  Jürgen Schmidhuber,et al.  Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks , 2006, ICML.

[228]  Zhou Wang,et al.  Quality-aware images , 2006, IEEE Transactions on Image Processing.

[229]  S. Ulukus,et al.  An Outer Bound for Multiple Access Channels with Correlated Sources , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[230]  Pramod K. Varshney,et al.  Fusion of decisions transmitted over Rayleigh fading channels in wireless sensor networks , 2006, IEEE Transactions on Signal Processing.

[231]  Lang Tong,et al.  Type based estimation over multiaccess channels , 2006, IEEE Transactions on Signal Processing.

[232]  T. Başar,et al.  Optimal Estimation with Limited Measurements , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[233]  Yasutada Oohama,et al.  Rate-distortion theory for Gaussian multiterminal source coding systems with several side informations at the decoder , 2005, IEEE Transactions on Information Theory.

[234]  Shlomo Shamai,et al.  Extremes of information combining , 2005, IEEE Transactions on Information Theory.

[235]  Venugopal V. Veeravalli,et al.  Asymptotic results for decentralized detection in power constrained wireless sensor networks , 2004, IEEE Journal on Selected Areas in Communications.

[236]  Gal Chechik,et al.  Information Bottleneck for Gaussian Variables , 2003, J. Mach. Learn. Res..

[237]  Bernd Girod,et al.  Towards practical Wyner-Ziv coding of video , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[238]  Zhou Wang,et al.  Multiscale structural similarity for image quality assessment , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[239]  Michael Gastpar,et al.  To code, or not to code: lossy source-channel communication revisited , 2003, IEEE Trans. Inf. Theory.

[240]  Venugopal V. Veeravalli,et al.  Decentralized detection in sensor networks , 2003, IEEE Trans. Signal Process..

[241]  Rui Zhang,et al.  Wyner-Ziv coding of motion video , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[242]  P.K. Varshney,et al.  Fusion of decisions transmitted over fading channels in wireless sensor networks , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[243]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[244]  Avideh Zakhor,et al.  Bit allocation for joint source/channel coding of scalable video , 2000, IEEE Trans. Image Process..

[245]  Mikael Skoglund,et al.  On channel-constrained vector quantization and index assignment for discrete memoryless channels , 1999, IEEE Trans. Inf. Theory.

[246]  Mikael Skoglund,et al.  Soft Decoding for Vector Quantization Over Noisy Channels with Memory , 1999, IEEE Trans. Inf. Theory.

[247]  Shun-ichi Amari,et al.  Statistical Inference Under Multiterminal Data Compression , 1998, IEEE Trans. Inf. Theory.

[248]  Elza Erkip,et al.  The Efficiency of Investment Information , 1998, IEEE Trans. Inf. Theory.

[249]  T. Duman,et al.  Decentralized detection over multiple-access channels , 1998 .

[250]  Kannan Ramchandran,et al.  Robust image transmission over energy-constrained time-varying channels using multiresolution joint source-channel coding , 1998, IEEE Trans. Signal Process..

[251]  Kuldip K. Paliwal,et al.  Bidirectional recurrent neural networks , 1997, IEEE Trans. Signal Process..

[252]  Bertrand M. Hochwald,et al.  Tradeoff between source and channel coding , 1997, Proceedings of IEEE International Symposium on Information Theory.

[253]  Raj Talluri,et al.  A robust, scalable, object-based video compression technique for very low bit-rate coding , 1997, IEEE Trans. Circuits Syst. Video Technol..

[254]  Toby Berger,et al.  The CEO problem [multiterminal source coding] , 1996, IEEE Trans. Inf. Theory.

[255]  M. Stella Atkins,et al.  Task-oriented lossy compression of magnetic resonance images , 1996, Medical Imaging.

[256]  Shun-ichi Amari,et al.  Parameter estimation with multiterminal data compression , 1995, IEEE Trans. Inf. Theory.

[257]  Alon Orlitsky,et al.  Coding for computing , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[258]  T. Berger,et al.  The quadratic Gaussian CEO problem , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[259]  S. Amari,et al.  Error bound of hypothesis testing with data compression , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[260]  Jörn Ostermann,et al.  Object-based analysis-synthesis coding based on the source model of moving rigid 3D objects , 1994, Signal Process. Image Commun..

[261]  Gregory J. Wolff,et al.  Optimal Brain Surgeon: Extensions and performance comparisons , 1993, NIPS 1993.

[262]  Hossam M. H. Shalaby,et al.  Multiterminal detection with zero-rate data compression , 1992, IEEE Trans. Inf. Theory.

[263]  Kazuo Kyuma,et al.  Weight quantization in Boltzmann machines , 1991, Neural Networks.

[264]  H. John Caulfield,et al.  Weight discretization paradigm for optical neural networks , 1990, Other Conferences.

[265]  Nariman Farvardin,et al.  A study of vector quantization for noisy channels , 1990, IEEE Trans. Inf. Theory.

[266]  Rudolf Ahlswede,et al.  On minimax estimation in the presence of side information about remote data , 1990 .

[267]  Toby Berger,et al.  Estimation via compressed information , 1988, IEEE Trans. Inf. Theory.

[268]  Te Han,et al.  Hypothesis testing with multiterminal data compression , 1987, IEEE Trans. Inf. Theory.

[269]  Rudolf Ahlswede,et al.  Hypothesis testing with communication constraints , 1986, IEEE Trans. Inf. Theory.

[270]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[271]  Jerry D. Gibson,et al.  Self-Orthogonal Convolutional Coding for the DPCM-AQB Speech Encoder , 1984, IEEE Trans. Commun..

[272]  Jean C. Walrand,et al.  Optimal causal coding - decoding problems , 1983, IEEE Trans. Inf. Theory.

[273]  N. THOMAS GAARDER,et al.  On optimal finite-state digital transmission systems , 1982, IEEE Trans. Inf. Theory.

[274]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[275]  Gunter Dueck,et al.  A note on the multiple access channel with correlated sources , 1981, IEEE Trans. Inf. Theory.

[276]  Masoud Salehi,et al.  Multiple access channels with arbitrarily correlated sources , 1980, IEEE Trans. Inf. Theory.

[277]  Hans S. Witsenhausen,et al.  Indirect rate distortion problems , 1980, IEEE Trans. Inf. Theory.

[278]  H. Witsenhausen On the structure of real-time source coders , 1979, The Bell System Technical Journal.

[279]  János Körner,et al.  How to encode the modulo-two sum of binary sources (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[280]  J. W. Modestino,et al.  Combined Source-Channel Coding of Images , 1978, IEEE Trans. Commun..

[281]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[282]  H. S. WITSENHAUSEN,et al.  The zero-error side information problem and chromatic numbers (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[283]  Rudolf Ahlswede,et al.  Source coding with side information and a converse for degraded broadcast channels , 1975, IEEE Trans. Inf. Theory.

[284]  Hans S. Witsenhausen,et al.  A conditional entropy bound for a pair of discrete random variables , 1975, IEEE Trans. Inf. Theory.

[285]  Aaron D. Wyner,et al.  On source coding with side information at the decoder , 1975, IEEE Trans. Inf. Theory.

[286]  Robert M. Gray,et al.  Source coding for a simple network , 1974 .

[287]  R. Gray Conditional Rate-Distortion Theory , 1972 .

[288]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[289]  Jack K. Wolf,et al.  Transmission of noisy information to a noisy receiver with minimum distortion , 1970, IEEE Trans. Inf. Theory.

[290]  Brockway Mcmillan,et al.  Communication systems which minimize coding noise , 1969 .

[291]  W. Kissick,et al.  ON THE HUMAN USE OF HUMAN BEINGS , 1969, Annals of the New York Academy of Sciences.

[292]  Leo I. Bluestein,et al.  Transmission of analog waveforms through channels with feedback (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[293]  Thomas J. Goblick,et al.  Theoretical limitations on the transmission of data from analog sources , 1965, IEEE Trans. Inf. Theory.

[294]  Terrence L. Fine,et al.  Properties of an optimum digital system and applications , 1964, IEEE Trans. Inf. Theory.

[295]  Boris Tsybakov,et al.  Information transmission with additional noise , 1962, IRE Trans. Inf. Theory.

[296]  C. Cherry,et al.  On Human Communication: A Review, a Survey, and a Criticism. , 1957 .

[297]  Fangfang Liu,et al.  Task-Oriented Semantic Communication Systems Based on Extended Rate-Distortion Theory , 2022, ArXiv.

[298]  Marco Tagliasacchi,et al.  SoundStream: An End-to-End Neural Audio Codec , 2022, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[299]  Caili Guo,et al.  Task-Oriented Semantic Communication with Semantic Reconstruction: An Extended Rate-Distortion Theory Based Scheme , 2022 .

[300]  Chris Joslin,et al.  Object based Hybrid Video Compression , 2021, VISIGRAPP.

[301]  Maria-Esther Vidal,et al.  Semantic Data Integration for Knowledge Graph Construction at Query Time , 2017, 2017 IEEE 11th International Conference on Semantic Computing (ICSC).

[302]  Paul Strauss,et al.  Foundations Of The Theory Of Signs , 2016 .

[303]  Laurent Itti,et al.  Visual attention guided bit allocation in video compression , 2011, Image Vis. Comput..

[304]  C. Shannon Coding Theorems for a Discrete Source With a Fidelity Criterion-Claude , 2009 .

[305]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[306]  Luciano Floridi,et al.  Semantic conceptions of information , 2005 .

[307]  J.P. Hespanha,et al.  Optimal communication logics in networked control systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[308]  T. Kailath,et al.  A coding scheme for additive noise channels with feedback, Part I: No bandwith constraint , 1998 .

[309]  I. D. Melamed Measuring Semantic Entropy , 1997 .

[310]  Gábor Simonyi,et al.  Graph entropy: A survey , 1993, Combinatorial Optimization.

[311]  Nariman Farvardin,et al.  On the performance and complexity of channel-optimized vector quantizers , 1991, IEEE Trans. Inf. Theory.

[312]  Te Sun Han,et al.  Exponential-type error probabilities for multiterminal hypothesis testing , 1989, IEEE Trans. Inf. Theory.

[313]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[314]  Lorien Y. Pratt,et al.  Comparing Biases for Minimal Network Construction with Back-Propagation , 1988, NIPS.

[315]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[316]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[317]  Jaakko Hintikka,et al.  On Semantic Information , 1970 .

[318]  Claude E. Shannon,et al.  Two-way Communication Channels , 1961 .

[319]  George L. Turin,et al.  The theory of optimum noise immunity , 1959 .

[320]  Rudolf Carnap,et al.  An outline of a theory of semantic information , 1952 .

[321]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .