Development of a knowledge-sharing parallel computing approach for calibrating distributed watershed hydrologic models

[1]  N. Melab,et al.  A performance-oriented comparative study of the Chapel high-productivity language to conventional programming environments , 2022, PMAM@PPoPP.

[2]  Ruonan Li,et al.  Improved Hadoop-based cloud for complex model simulation optimization: Calibration of SWAT as an example , 2022, Environ. Model. Softw..

[3]  David Bindel,et al.  Early termination strategies with asynchronous parallel optimization in application to automatic calibration of groundwater PDE models , 2022, Environ. Model. Softw..

[4]  Dejian Zhang,et al.  A scalable distributed parallel simulation tool for the SWAT model , 2021, Environ. Model. Softw..

[5]  Dejian Zhang,et al.  GP-SWAT (v1.0): a two-level graph-based parallel simulation tool for the SWAT model , 2021, Geoscientific Model Development.

[6]  Bin Xu,et al.  Spark-based parallel dynamic programming and particle swarm optimization via cloud computing for a large-scale reservoir system , 2021, Journal of Hydrology.

[7]  Chong-yu Xu Issues influencing accuracy of hydrological modeling in a changing environment , 2021, Water Science and Engineering.

[8]  Zhong-kai Feng,et al.  Parallel computing and swarm intelligence based artificial intelligence model for multi-step-ahead hydrological time series prediction , 2021 .

[9]  S. A. Zúñiga Medina,et al.  Calibration and Uncertainty Analysis for Modelling Runoff in the Tambo River Basin, Peru, Using Sequential Uncertainty Fitting Ver-2 (SUFI-2) Algorithm , 2021, Air, Soil and Water Research.

[10]  Taimoor Akhtar,et al.  Advancing model calibration and uncertainty analysis of SWAT models using cloud computing infrastructure: LCC-SWAT , 2020 .

[11]  El-Ghazali Talbi,et al.  A comparative study of high-productivity high-performance programming languages for parallel metaheuristics , 2020, Swarm Evol. Comput..

[12]  Carolina Massmann,et al.  Identification of factors influencing hydrologic model performance using a top‐down approach in a large number of U.S. catchments , 2019, Hydrological processes.

[13]  Venkatesh Budamala,et al.  Enhance the prediction of complex hydrological models by pseudo-simulators , 2019, Geocarto International.

[14]  N. Kouwen,et al.  Comparing single and multi-objective hydrologic model calibration considering reservoir inflow and streamflow observations , 2019, Canadian Water Resources Journal / Revue canadienne des ressources hydriques.

[15]  Jungjin Kim,et al.  Quantifying the Performances of the Semi-Distributed Hydrologic Model in Parallel Computing—A Case Study , 2019, Water.

[16]  Yang Hong,et al.  Heterogeneous parallel computing accelerated generalized likelihood uncertainty estimation (GLUE) method for fast hydrological model uncertainty analysis purpose , 2019, Engineering with Computers.

[17]  Yingying Song,et al.  An improved genetic algorithm for numerical function optimization , 2018, Applied Intelligence.

[18]  J. Lindsay,et al.  Development of an Integrated Modelling System for Evaluating Water Quantity and Quality Effects of Individual Wetlands in an Agricultural Watershed , 2018, Water.

[19]  Eric Zhu,et al.  Evaluation of four hydrological models for operational flood forecasting in a Canadian Prairie watershed , 2018, Hydrological Sciences Journal.

[20]  Thomas B. Rolinger,et al.  Parallel Sparse Tensor Decomposition in Chapel , 2018, 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[21]  Jiuyuan Huo,et al.  An improved multi-cores parallel artificial Bee colony optimization algorithm for parameters calibration of hydrological model , 2018, Future Gener. Comput. Syst..

[22]  Yang Hong,et al.  Fast hydrological model calibration based on the heterogeneous parallel computing accelerated shuffled complex evolution method , 2018 .

[23]  P. S. Rao,et al.  Optimization of CMOS Analog Circuits Using Grey Wolf Optimization Algorithm , 2017, 2017 14th IEEE India Council International Conference (INDICON).

[24]  Mengjie Zhang,et al.  A multi-core CPU and many-core GPU based fast parallel shuffled complex evolution global optimization approach , 2017, IEEE Transactions on Parallel and Distributed Systems.

[25]  Dejian Zhang,et al.  Moving SWAT model calibration and uncertainty analysis to an enterprise Hadoop-based cloud , 2016, Environ. Model. Softw..

[26]  Keith D. Underwood,et al.  Enabling Scalable High-Performance Systems with the Intel Omni-Path Architecture , 2016, IEEE Micro.

[27]  Xinjian Li,et al.  Improvement of hydrological model calibration by selecting multiple parameter ranges , 2016 .

[28]  Luis Samaniego,et al.  Multi-objective vs. single-objective calibration of a hydrologic model using single- and multi-objective screening , 2016 .

[29]  Xiang Li,et al.  Double-layer parallelization for hydrological model calibration on HPC systems , 2016 .

[30]  Douglas R. Smith,et al.  Evaluation of Dynamically Dimensioned Search Algorithm for Optimizing SWAT by Altering Sampling Distributions and Searching Range , 2016 .

[31]  Patrick M. Reed,et al.  Large-scale parallelization of the Borg multiobjective evolutionary algorithm to enhance the management of complex environmental systems , 2015, Environ. Model. Softw..

[32]  Stefan Marr,et al.  Partitioned Global Address Space Languages , 2015, ACM Comput. Surv..

[33]  Samia Nefti-Meziani,et al.  A Comprehensive Review of Swarm Optimization Algorithms , 2015, PloS one.

[34]  Xi Chen,et al.  A new parallel framework of distributed SWAT calibration , 2015, Journal of Arid Land.

[35]  S. Fong,et al.  Metaheuristic Algorithms: Optimal Balance of Intensification and Diversification , 2014 .

[36]  Chong-yu Xu,et al.  Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China , 2013 .

[37]  L. Shawn Matott,et al.  Telescoping strategies for improved parameter estimation of environmental simulation models , 2013, Comput. Geosci..

[38]  Z. Beheshti A review of population-based meta-heuristic algorithm , 2013, SOCO 2013.

[39]  Kenjiro Taura,et al.  An Empirical Performance Study of Chapel Programming Language , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum.

[40]  Bu-Sung Lee,et al.  Speedup for Multi-Level Parallel Computing , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum.

[41]  Kuolin Hsu,et al.  From lumped to distributed via semi-distributed: Calibration strategies for semi-distributed hydrologic models , 2012 .

[42]  Katherine A. Yelick,et al.  Tuning collective communication for Partitioned Global Address Space programming models , 2011, Parallel Comput..

[43]  N. McIntyre,et al.  Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications , 2011 .

[44]  Don Syme,et al.  The F# Asynchronous Programming Model , 2011, PADL.

[45]  Bryan A. Tolson,et al.  Reducing the computational cost of automatic calibration through model preemption , 2010 .

[46]  Adam Prügel-Bennett,et al.  Benefits of a Population: Five Mechanisms That Advantage Population-Based Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[47]  Rajeev Thakur,et al.  Hybrid parallel programming with MPI and unified parallel C , 2010, Conf. Computing Frontiers.

[48]  Hoshin Vijai Gupta,et al.  Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling , 2009 .

[49]  Raghavan Srinivasan,et al.  Approximating SWAT Model Using Artificial Neural Network and Support Vector Machine 1 , 2009 .

[50]  Raghavan Srinivasan,et al.  Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model , 2009 .

[51]  Bradford L. Chamberlain,et al.  Parallel Programmability and the Chapel Language , 2007, Int. J. High Perform. Comput. Appl..

[52]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[53]  R. McCuen,et al.  Evaluation of the Nash-Sutcliffe Efficiency Index , 2006 .

[54]  Peter M. A. Sloot,et al.  Application of parallel computing to stochastic parameter estimation in environmental models , 2006, Comput. Geosci..

[55]  Mehmet Fatih Tasgetiren,et al.  A Multi-Populated Differential Evolution Algorithm for Solving Constrained Optimization Problem , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[56]  Zhiqiang Ma,et al.  A theory of data race detection , 2006, PADTAD '06.

[57]  Henrik Madsen,et al.  An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation , 2004 .

[58]  Theo Ungerer,et al.  Asynchrony in Parallel Computing: From Dataflow to Multithreading , 2001, Scalable Comput. Pract. Exp..

[59]  Doug Lea,et al.  A Java fork/join framework , 2000, JAVA '00.

[60]  Francine Berman,et al.  Master/slave computing on the Grid , 2000, Proceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat. No.PR00556).

[61]  J. Refsgaard Parameterisation, calibration and validation of distributed hydrological models , 1997 .

[62]  Okke Batelaan,et al.  A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa) , 1996 .

[63]  M. J. Quinn,et al.  Parallel Computing: Theory and Practice , 1994 .

[64]  V. Nelson Fault-tolerant computing: fundamental concepts , 1990, Computer.

[65]  Edward D. Lazowska,et al.  Speedup Versus Efficiency in Parallel Systems , 1989, IEEE Trans. Computers.

[66]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[67]  M. Zare,et al.  Evaluation of Soil Water Content Using SWAT for Southern Saskatchewan, Canada , 2022 .

[68]  Taimoor Akhtar,et al.  Efficient parallel surrogate optimization algorithm and framework with application to parameter calibration of computationally expensive three-dimensional hydrodynamic lake PDE models , 2021, Environ. Model. Softw..

[69]  Alejandro Zunino,et al.  DPM: A novel distributed large-scale social graph processing framework for link prediction algorithms , 2018, Future Gener. Comput. Syst..

[70]  Xiaoli Zhang,et al.  Multi-Core Parallel Particle Swarm Optimization for the Operation of Inter-Basin Water Transfer-Supply Systems , 2016, Water Resources Management.

[71]  Indrajeet Chaubey,et al.  Application of Parallel Computing Methods for Improving Efficiency of Optimization in Hydrologic and Water Quality Modeling , 2015 .

[72]  Chuntian Cheng,et al.  Comparison of three global optimization algorithms for calibration of the Xinanjiang model parameters , 2013 .

[73]  Raghavan Srinivasan,et al.  SWAT: Model Use, Calibration, and Validation , 2012 .

[74]  Jaehak Jeong,et al.  EPIC and APEX: Model Use, Calibration, and Validation , 2012 .

[75]  Jie Cheng,et al.  Programming Massively Parallel Processors. A Hands-on Approach , 2010, Scalable Comput. Pract. Exp..

[76]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[77]  Christian Engelmann,et al.  Achieving Computational I/O Efficiency in a High Performance Cluster Using Multicore Processors , 2006 .

[78]  David D. Bosch,et al.  PROBLEMS AND POTENTIAL OF AUTOCALIBRATING A HYDROLOGIC MODEL , 2005 .

[79]  David D. Bosch,et al.  REMM: The Riparian Ecosystem Management Model , 2000 .