The influence of external noise on non-equilibrium phase transitions

The method of Ito stochastic differential equations is used to analyze the influence of external noise in non-equilibrium phase transitions. It is found that external noise deeply affects the behaviour of the system and gives rise to new phenomena not predicted by the deterministic analysis.

[1]  Abraham Nitzan,et al.  Fluctuations and transitions at chemical instabilities: The analogy to phase transitions , 1974 .

[2]  F. Schlögl,et al.  On thermodynamics near a steady state , 1971 .

[3]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[4]  I. Prigogine,et al.  On symmetry-breaking instabilities in dissipative systems , 1967 .

[5]  F. Schlögl Chemical reaction models for non-equilibrium phase transitions , 1972 .

[6]  H. Janssen Stochastisches Reaktionsmodell für einen Nichtgleichgewichts-Phasenübergang , 1974 .

[7]  Hermann Haken,et al.  Fluctuations and stability of stationary non-equilibrium systems in detailed balance , 1971 .

[8]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[10]  W. Horsthemke,et al.  Onsager-Machlup Function for one dimensional nonlinear diffusion processes , 1975 .

[11]  K. McNeil,et al.  Nonequilibrium phase transitions in chemical reactions , 1974 .

[12]  I. V. Prokhorov Probability theory , 1969 .

[13]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[14]  E. J. McShane Stochastic Calculus and Stochastic Models , 1974 .

[15]  E. Fels Gelfand, I. M., und G. E. Schilow: Verallgemeinerte Funktionen (Distributionen). I: Verallgemeinerte Funktionen und das Rechnen mit ihnen. VEB Deutscher Verlag der Wissenschaften, Berlin 1960; 364 S., 7 Abb., Leinen DM 37,– , 1963 .

[16]  G. Nicolis,et al.  A master equation description of local fluctuations , 1975 .

[17]  E. Wong,et al.  On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .